skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Relativistic dissipative hydrodynamics: A minimal causal theory

Abstract

We present a new formalism for the theory of relativistic dissipative hydrodynamics. Here, we look for the minimal structure of such a theory which satisfies the covariance and causality by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). It can readily be applied to the full three-dimensional hydrodynamical calculations. We apply our formalism to the Bjorken model and the results are shown to be analogous to the IS.

Authors:
; ; ;  [1]
  1. Instituto de Fisica, Universidade Federal do Rio de Janeiro, C. P. 68528, 21945-970, Rio de Janeiro (Brazil)
Publication Date:
OSTI Identifier:
20995158
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. C, Nuclear Physics; Journal Volume: 75; Journal Issue: 3; Other Information: DOI: 10.1103/PhysRevC.75.034909; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; CAUSALITY; CURRENTS; HYDRODYNAMICS; RELATIVISTIC RANGE; THREE-DIMENSIONAL CALCULATIONS

Citation Formats

Koide, T., Denicol, G. S., Mota, Ph., and Kodama, T.. Relativistic dissipative hydrodynamics: A minimal causal theory. United States: N. p., 2007. Web. doi:10.1103/PHYSREVC.75.034909.
Koide, T., Denicol, G. S., Mota, Ph., & Kodama, T.. Relativistic dissipative hydrodynamics: A minimal causal theory. United States. doi:10.1103/PHYSREVC.75.034909.
Koide, T., Denicol, G. S., Mota, Ph., and Kodama, T.. Thu . "Relativistic dissipative hydrodynamics: A minimal causal theory". United States. doi:10.1103/PHYSREVC.75.034909.
@article{osti_20995158,
title = {Relativistic dissipative hydrodynamics: A minimal causal theory},
author = {Koide, T. and Denicol, G. S. and Mota, Ph. and Kodama, T.},
abstractNote = {We present a new formalism for the theory of relativistic dissipative hydrodynamics. Here, we look for the minimal structure of such a theory which satisfies the covariance and causality by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). It can readily be applied to the full three-dimensional hydrodynamical calculations. We apply our formalism to the Bjorken model and the results are shown to be analogous to the IS.},
doi = {10.1103/PHYSREVC.75.034909},
journal = {Physical Review. C, Nuclear Physics},
number = 3,
volume = 75,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2{yields}2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio {eta}/s{approx_equal}const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path {tau}{sub 0}/{lambda}{sub tr,0}more » > or approx. 2. The same accuracy with NS requires three times larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 6. For dynamics driven by a constant cross section, on the other hand, about 50% larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., {radical}(s{sub NN}){approx}100-200 GeV, these limits imply that even the IS approach becomes marginal when {eta}/s > or approx. 0.15. In addition, we find that the 'naive' approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.« less
  • We studied shock propagation and its stability with causal dissipative hydrodynamics in (1+1)-dimensional systems. We show that the presence of the usual viscosity is not enough to stabilize the solution. This problem is solved by introducing an additional viscosity that is related to the coarse-grain scale of the theory.
  • The shear viscosity coefficient and the corresponding relaxation time for causal dissipative hydrodynamics are calculated based on the microscopic formula proposed in T. Koide and T. Kodama [Phys. Rev. E 78, 051107 (2008)]. Here, the exact formula is transformed into a more compact form and applied to evaluate these transport coefficients in the chiral perturbation theory and perturbative QCD. It is shown that in the leading order calculation, the causal shear viscosity coefficient eta reduces to that of the ordinary Green-Kubo-Nakano formula, and the relaxation time tau{sub p}i is related to eta and pressure P by a simple relationship, tau{submore » p}i=eta/P.« less
  • The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predictedmore » {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.« less
  • We explore the effects of shear viscosity on the hydrodynamic evolution and final hadron spectra of Cu + Cu collisions at ultrarelativistic collision energies, using the newly developed (2 + 1)-dimensional viscous hydrodynamic code VISH2+1. Based on the causal Israel-Stewart formalism, this code describes the transverse evolution of longitudinally boost-invariant systems without azimuthal symmetry around the beam direction. Shear viscosity is shown to decelerate the longitudinal and accelerate the transverse hydrodynamic expansion. For fixed initial conditions, this leads to a longer quark-gluon plasma (QGP) lifetime, larger radial flow in the final state, and flatter transverse momentum spectra for the emittedmore » hadrons compared to ideal fluid dynamic simulations. We find that the elliptic flow coefficient v{sub 2} is particularly sensitive to shear viscosity: even the lowest value allowed by the AdS/CFT conjecture {eta}/s{>=}1/4{pi} suppresses v{sub 2} enough to have significant consequences for the phenomenology of heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC). A comparison between our numerical results and earlier analytic estimates of viscous effects within a blast-wave model parametrization of the expanding fireball at freeze-out reveals that the full dynamical theory leads to much tighter constraints for the specific shear viscosity {eta}/s, thereby supporting the notion that the quark-gluon plasma created at RHIC exhibits almost 'perfect fluidity.'.« less