skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics

Abstract

A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows.

Authors:
 [1];  [1];  [2]
  1. Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Road, Tapei, Taiwan 10764, Taiwan (China)
  2. Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Road, Tapei, Taiwan 10764, Taiwan (China). E-mail: yangjy@iam.ntu.edu.tw
Publication Date:
OSTI Identifier:
20991566
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 222; Journal Issue: 2; Other Information: DOI: 10.1016/j.jcp.2006.08.001; PII: S0021-9991(06)00368-8; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BEAM DYNAMICS; BOLTZMANN EQUATION; CALCULATION METHODS; COORDINATES; CYLINDERS; DIFFRACTION; GAS FLOW; INTERPOLATION; KINETICS; QUANTUM MECHANICS; RESOLUTION; SHOCK WAVES; STATISTICS

Citation Formats

Shi, Yu-Hsin, Huang, J.C., and Yang, J.Y. High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics. United States: N. p., 2007. Web. doi:10.1016/j.jcp.2006.08.001.
Shi, Yu-Hsin, Huang, J.C., & Yang, J.Y. High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics. United States. doi:10.1016/j.jcp.2006.08.001.
Shi, Yu-Hsin, Huang, J.C., and Yang, J.Y. Tue . "High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics". United States. doi:10.1016/j.jcp.2006.08.001.
@article{osti_20991566,
title = {High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics},
author = {Shi, Yu-Hsin and Huang, J.C. and Yang, J.Y.},
abstractNote = {A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows.},
doi = {10.1016/j.jcp.2006.08.001},
journal = {Journal of Computational Physics},
number = 2,
volume = 222,
place = {United States},
year = {Tue Mar 20 00:00:00 EDT 2007},
month = {Tue Mar 20 00:00:00 EDT 2007}
}
  • A class of high-order kinetic flux vector splitting schemes are presented for solving ideal quantum gas dynamics based on quantum statistical mechanics. The collisionless quantum Boltzmann equation approach is adopted and both Bose-Einstein and Fermi-Dirac gases are considered. The formulas for the split flux vectors are derived based on the general three-dimensional distribution function in velocity space and formulas for lower dimensions can be directly deduced. General curvilinear coordinates are introduced to treat practical problems with general geometry. High-order accurate schemes using weighted essentially non-oscillatory methods are implemented. The resulting high resolution kinetic flux splitting schemes are tested for 1Dmore » shock tube flows and shock wave diffraction by a 2D wedge and by a circular cylinder in ideal quantum gases. Excellent results have been obtained for all examples computed.« less
  • It is shown why one cannot make a transition from classical to quantum theory in generalized coordinates via the covariant derivative. An interesting connection is shown between the covariant derivative operator and the measurable'' generalized momentum operator. (UK)
  • When one considers the quantum Hamiltonian for a charge in an electromagnetic field in Cartesian coordinates, no problem arises concerning the ordering of the quantum operators. However, if one considers the quantum Hamiltonian operator for a charge in an electromagnetic field in generalized coordinates, the question on the ordering problem becomes very apparent. Such a Hamiltonian operator is given. (UK)
  • A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacymore » of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments.« less
  • The advantages and disadvantages of four new high-resolution difference schemes, namely the von Neumann-Richtmyer, Godunovs, MUSCL and Glimms, for mathematically representing physical conditions in compressible gas flows are compared. (LCL)