skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma

Abstract

Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to {beta}-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing {beta}-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells.

Authors:
 [1];  [2];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3]
  1. State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi (China)
  2. (China)
  3. State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi (China). E-mail: fandaim@fmmu.edu.cn
Publication Date:
OSTI Identifier:
20991341
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 356; Journal Issue: 4; Other Information: DOI: 10.1016/j.bbrc.2007.03.080; PII: S0006-291X(07)00525-6; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; AGAR; CARCINOMAS; CELL CYCLE; CELL PROLIFERATION; COLONY FORMATION; GENE REGULATION; GROWTH; INHIBITION; KIDNEYS; MICE; PHENOTYPE; PROTEINS

Citation Formats

Sun, Shiren, Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Ning, Xiaoxuan, Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Liu, Jie, Liu, Lili, Chen, Yu, Han, Shuang, Zhang, Yanqi, Liang, Jie, Wu, Kaichun, and Fan, Daiming. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma. United States: N. p., 2007. Web. doi:10.1016/j.bbrc.2007.03.080.
Sun, Shiren, Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Ning, Xiaoxuan, Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Liu, Jie, Liu, Lili, Chen, Yu, Han, Shuang, Zhang, Yanqi, Liang, Jie, Wu, Kaichun, & Fan, Daiming. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma. United States. doi:10.1016/j.bbrc.2007.03.080.
Sun, Shiren, Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Ning, Xiaoxuan, Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Liu, Jie, Liu, Lili, Chen, Yu, Han, Shuang, Zhang, Yanqi, Liang, Jie, Wu, Kaichun, and Fan, Daiming. Fri . "Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma". United States. doi:10.1016/j.bbrc.2007.03.080.
@article{osti_20991341,
title = {Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma},
author = {Sun, Shiren and Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi and Ning, Xiaoxuan and Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi and Liu, Jie and Liu, Lili and Chen, Yu and Han, Shuang and Zhang, Yanqi and Liang, Jie and Wu, Kaichun and Fan, Daiming},
abstractNote = {Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to {beta}-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing {beta}-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells.},
doi = {10.1016/j.bbrc.2007.03.080},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 356,
place = {United States},
year = {Fri May 18 00:00:00 EDT 2007},
month = {Fri May 18 00:00:00 EDT 2007}
}
  • Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels weremore » associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.« less
  • Highlights: Black-Right-Pointing-Pointer CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. Black-Right-Pointing-Pointer Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. Black-Right-Pointing-Pointer CDKN3 could inhibit the expression of p21 in HCC cells. Black-Right-Pointing-Pointer Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. Black-Right-Pointing-Pointer We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this genemore » has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.« less
  • Irradiation of human renal cell carcinoma before radical tumor nephrectomy resulted in a significantly lower acceptance rate (1 of 7) in nude mice than for nonirradiated tumors (all of 13). The tumor tissue was transplanted into NMRI nu/nu mice immediately after nephrectomy. In this experimental system the authors demonstrated the reduced vitality of human tumor cells after irradiation. In a second series of experiments, 3 morphologically different human renal cell carcinomas were irradiated at various doses after establishment in nude mice. The irradiated tumor tissue was transplanted to the next passage. The morphology, proliferation rate and growth of these tumorsmore » were compared with those of nonirradiated controls. Radiation effect was dose dependent in the responding tumor types. The characteristics correlated with radiosensitivity were high proliferation rate (measured by flow cytometry), low cytologic grading and fast growth rate in the nude mice.« less
  • Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In thismore » study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.« less
  • Highlights: Black-Right-Pointing-Pointer miR-214 is frequently downregulated in human HCC cell lines and tissues. Black-Right-Pointing-Pointer miR-214 overexpression inhibits HCC cell growth in vitro and in vivo. Black-Right-Pointing-Pointer miR-214 directly targets {beta}-catenin 3 Prime -UTR in HCC cells. Black-Right-Pointing-Pointer miR-214 regulates {beta}-catenin downstream signaling molecules. -- Abstract: Mounting evidence has shown that microRNAs (miRNAs) are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. Recent profile studies of miRNA expression have documented a deregulation of miRNA (miR-214) in hepatocellular carcinoma (HCC). However, its potential functions and underlying mechanisms in hepatocarcinogenesis remain largely unknown. Here, we confirmedmore » that miR-214 is significantly downregulated in HCC cells and specimens. Ectopic overexpression of miR-214 inhibited proliferation of HCC cells in vitro and tumorigenicity in vivo. Further studies revealed that miR-214 could directly target the 3 Prime -untranslated region (3 Prime -UTR) of {beta}-catenin mRNA and suppress its protein expression. Similar to the restoring miR-214 expression, {beta}-catenin downregulation inhibited cell growth, whereas restoring the {beta}-catenin expression abolished the function of miR-214. Moreover, miR-214-mediated reduction of {beta}-catenin resulted in suppression of several downstream genes including c-Myc, cyclinD1, TCF-1, and LEF-1. These findings indicate that miR-214 serves as tumor suppressor and plays substantial roles in inhibiting the tumorigenesis of HCC through suppression of {beta}-catenin. Given these, miR-214 may serve as a useful prognostic or therapeutic target for treatment of HCC.« less