skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling of intermediate phase growth

Abstract

We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.

Authors:
 [1]
  1. Department of Natural Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301 (United States)
Publication Date:
OSTI Identifier:
20982650
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 101; Journal Issue: 2; Other Information: DOI: 10.1063/1.2424530; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; APPROXIMATIONS; COPPER; CRYSTAL GROWTH; INTERMETALLIC COMPOUNDS; LAYERS; PHYSICAL METALLURGY; SIMULATION; SOLDERING

Citation Formats

Umantsev, A. Modeling of intermediate phase growth. United States: N. p., 2007. Web. doi:10.1063/1.2424530.
Umantsev, A. Modeling of intermediate phase growth. United States. doi:10.1063/1.2424530.
Umantsev, A. Mon . "Modeling of intermediate phase growth". United States. doi:10.1063/1.2424530.
@article{osti_20982650,
title = {Modeling of intermediate phase growth},
author = {Umantsev, A.},
abstractNote = {We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.},
doi = {10.1063/1.2424530},
journal = {Journal of Applied Physics},
number = 2,
volume = 101,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}
  • Cahn-Hilliard type equations are derived to study the competitive growth of three isostructural phases in binary, stressed, thin-plate diffusion couple when the lattice parameter depends either linearly or quadratically on the composition. Compositional stresses change qualitatively and quantitatively the evolution of the intermediate phase with respect to the stress-free case. Growth kinetics depend critically on whether the plate is free to bend or is affixed to a rigid substrate. The thickness of the intermediate phase is proportional to the square root of time for the rigid substrate case, but can depend on plate thickness and exceed a linear dependence onmore » time for other conditions. Compositional strains can stabilize a non-equilibrium phase, prevent the growth of an equilibrium phase, and give rise to the stable coexistence of three coherent phases, in contradiction to the Gibbs phase rule for hydrostatically stressed systems.« less
  • InAs quantum dot multilayers have been grown using Al{sub x}Ga{sub 1−x}As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure.
  • To better understand environmentally assisted crack growth (SCG) in yttria stabilized zirconia, experimental studies were undertaken to characterize the kinetics of crack growth and the associated stress/moisture induced phase transformation in ZrO[sub 2] + 3 mol% Y[sub 2]O[sub 3] (3Y-TZP) in water, dry nitrogen and toluene from 3 to 70 C. The results showed that crack growth in water depended strongly on stress intensity factor (K[sub 1]) and temperature (T) and involved the transformation of a thin layer of material near the crack tip from the tetragonal (t) to the monoclinic (m) phase. These results, combined with literature data onmore » moisture-induced phase transformation, suggested that crack growth enhancement by water is controlled by the rate of this transformation and reflects the environmental cracking susceptibility of the transformed m-phase. A model was developed to link subcritical crack growth (SCG) rate to the kinetics of t [yields] m phase transformation. The SCG rate is expressed as an exponential function of stress-free activation energy, a stress-dependent contribution in terms of the mode 1 stress intensity factor K[sub I] and actuation volume, and temperature. The stress-free activation energies for water and the inert environments were determined to be 82 [+-] 3 and 169 [+-] 4 kJ/mol, respectively, at the 95% confidence level, and the corresponding activation volumes were 14 and 35 unit cells. The decreases in activation energy and activation volume may be attributed to a change in surface energy by water.« less
  • The work carried out involved development of theoretical models to predict the {alpha} + {beta} {R_arrow} {beta} transformation during heating, grain growth, and subsequent transformation of {beta} on cooling in the Ti-6Al-4V alloy. The data for correlation of microstructure to mechanical properties have been generated experimentally using simulated HAZ (heat-affected zone) specimens. The overall effect of the weld variables on the HAZ microstructure can be visualized from the HAZ microstructure diagram which depicts various phase transformations occurring during the weld thermal cycle in t{sub 8/5}-T{sub p} space. The results of computer modeling indicate that due to the rapid heating andmore » cooling cycles encountered in welding, the shift in {beta} transus may be hundreds of degrees. Also, in the near-HAZ region, the grains can grow an order of magnitude larger than the original grain size. The formation of lamellar {alpha} can be minimized by reducing the t{sub 8/5} parameter. The experimental simulation results confirm excessive grain growth in the HAZ region. The hardness values do not show any significant trend, but the fracture toughness is found to deteriorate in the HAZ.« less
  • A phase-field model is developed to investigate the migration of vacancies, interstitials, and voids as well as void growth kinetics in materials under radiation and temperature field. The model takes into account the generation of vacancies and interstitials associated with the irradiation damage, the recombination between vacancies and interstitials, defect diffusion, and defect sinks. The effect of void sizes, vacancy concentration, vacancy generation rate, recombination rate, and temperature gradient on a single void migration and growth kinetics is parametrically studied. The results demonstrate that the temperature gradient causes void migration and defect fluxes, i.e., the Soret effect, which affects voidmore » stability and growth kinetics. It is found that 1) the void migration mobility is independent of the void size, which is in agreement with the theoretical prediction with the assumption of bulk diffusion controlled migration; 2) the void migration mobility strongly depends on temperature gradient; and 3) the effect of defect concentration, generation rate, and recombination rate on void migration mobility is minor although they strongly influence the void growth kinetics.« less