skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Critique of the foundations of time-dependent density-functional theory

Abstract

The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactnessmore » of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion.« less

Authors:
;  [1];  [2]
  1. Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)
  2. (Germany)
Publication Date:
OSTI Identifier:
20982112
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. A; Journal Volume: 75; Journal Issue: 2; Other Information: DOI: 10.1103/PhysRevA.75.022513; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; ACTION INTEGRAL; BORON 15; DENSITY; DENSITY FUNCTIONAL METHOD; ELECTRONS; FOUNDATIONS; FUNCTIONALS; GROUND STATES; LOSSES; MATRICES; MATRIX ELEMENTS; POTENTIALS; RADICALS; TIME DEPENDENCE

Citation Formats

Schirmer, J., Dreuw, A., and Institut fuer Physikalische und Theoretische Chemie, Universitaet Frankfurt, D-60439 Frankfurt. Critique of the foundations of time-dependent density-functional theory. United States: N. p., 2007. Web. doi:10.1103/PHYSREVA.75.022513.
Schirmer, J., Dreuw, A., & Institut fuer Physikalische und Theoretische Chemie, Universitaet Frankfurt, D-60439 Frankfurt. Critique of the foundations of time-dependent density-functional theory. United States. doi:10.1103/PHYSREVA.75.022513.
Schirmer, J., Dreuw, A., and Institut fuer Physikalische und Theoretische Chemie, Universitaet Frankfurt, D-60439 Frankfurt. Thu . "Critique of the foundations of time-dependent density-functional theory". United States. doi:10.1103/PHYSREVA.75.022513.
@article{osti_20982112,
title = {Critique of the foundations of time-dependent density-functional theory},
author = {Schirmer, J. and Dreuw, A. and Institut fuer Physikalische und Theoretische Chemie, Universitaet Frankfurt, D-60439 Frankfurt},
abstractNote = {The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion.},
doi = {10.1103/PHYSREVA.75.022513},
journal = {Physical Review. A},
number = 2,
volume = 75,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}
  • To understand the effects of the anchor part in organic dyes on the energy conversion efficiency of dye-sensitized solar cells (DSCs), two different anchor groups used in metal-free triphenylamine (TPA)-based organic dyes for DSCs have been theoretically compared. Density functional theory (DFT) and time-dependent DFT (TDDFT) study of geometry properties, excitations, and electronic structures of triarylamine-based dyes (TC1 and TPAR1) before and after binding to titanium has been performed under the level of TD-PBE1PBE/6-311G(d,p)//B3LYP/6-311G(d,p). The result shows that cyanoacrylic acid anchor favors better photoelectrochemical properties of DSCs than that of rhodanine-3-acetic acid anchor via providing more shift of TiO{sub 2}more » conduction band toward the vacuum energy levels (larger open circuit potentials) and more favorable conjugation with titanium. This study is expected to shed light on the design of metal-free organic dyes for DSCs.« less
  • We have applied the relaxed and self-consistent extension of constricted variational density functional theory (RSCF-CV-DFT) for the calculation of the lowest charge transfer transitions in the molecular complex X-TCNE between X = benzene and TCNE = tetracyanoethylene. Use was made of functionals with a fixed fraction (α) of Hartree-Fock exchange ranging from α = 0 to α = 0.5 as well as functionals with a long range correction (LC) that introduces Hartree-Fock exchange for longer inter-electronic distances. A detailed comparison and analysis is given for each functional between the performance of RSCF-CV-DFT and adiabatic time-dependent density functional theory (TDDFT) withinmore » the Tamm-Dancoff approximation. It is shown that in this particular case, all functionals afford the same reasonable agreement with experiment for RSCF-CV-DFT whereas only the LC-functionals afford a fair agreement with experiment using TDDFT. We have in addition calculated the CT transition energy for X-TCNE with X = toluene, o-xylene, and naphthalene employing the same functionals as for X = benzene. It is shown that the calculated charge transfer excitation energies are in as good agreement with experiment as those obtained from highly optimized LC-functionals using adiabatic TDDFT. We finally discuss the relation between the optimization of length separation parameters and orbital relaxation in the RSCF-CV-DFT scheme.« less
  • A general formalism for time-dependent linear response theory is presented within the framework of linear-combination-of-atomic-orbital crystalline orbital theory for the electronic excited states of infinite one-dimensional lattices (polymers). The formalism encompasses those of time-dependent Hartree-Fock theory (TDHF), time-dependent density functional theory (TDDFT), and configuration interaction singles theory (CIS) (as the Tamm-Dancoff approximation to TDHF) as particular cases. These single-excitation theories are implemented by using a trial-vector algorithm, such that the atomic-orbital-based two-electron integrals are recomputed as needed and the transformation of these integrals from the atomic-orbital basis to the crystalline-orbital basis is avoided. Convergence of the calculated excitation energies withmore » respect to the number of unit cells taken into account in the lattice summations (N) and the number of wave vector sampling points (K) is studied taking the lowest singlet and triplet exciton states of all-trans polyethylene as an example. The CIS and TDHF excitation energies of polyethylene show rapid convergence with respect to K and they are substantially smaller than the corresponding Hartree-Fock fundamental band gaps. In contrast, the excitation energies obtained from TDDFT and its modification, the Tamm-Dancoff approximation to TDDFT, show slower convergence with respect to K and the excitation energies to the lowest singlet exciton states tend to collapse to the corresponding Kohn-Sham fundamental band gaps in the limit of K{yields}{infinity}. We consider this to be a consequence of the incomplete cancellation of the self-interaction energy in the matrix elements of the TDDFT matrix eigenvalue equation, and to be a problem inherent to the current approximate exchange-correlation potentials that decay too rapidly in the asymptotic region. (c) 1999 American Institute of Physics.« less
  • Ionization and high-order harmonic generation of the one-dimensional (1D) H{sub 2} molecule in intense ultrashort laser fields are investigated using several current approximations for electron dynamics. Single- and double-ionization probabilities are compared with exact results. It is found that for the ground state X {sup 1}{sigma}{sub g}{sup +}, time-dependent extended Hartree-Fock gives generally comparable results except in the plateau region. The adiabatic local density approximation and time-dependent optimized effective potential with self-interaction correction (TDKLI) methods underestimate the ionization probabilities with no plateau and knee for double ionization contrary to the exact results. For the triplet excited state A {sup 3}{sigma}{submore » u}{sup +}, where exchange is important, the TDKLI results agree well with the exact results. The exact double-ionization probabilities suggest the need for accurate pair-correlation functions.« less