skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single cell transfection using plasmid decorated AFM probes

Abstract

Eukaryotic cells were individually transfected using commercially available atomic force microscope tips decorated with plasmidic DNA encoding for the fluorescent protein EGFP. In a typical transfection attempt, the tip is forcibly incorporated into the cell thus allowing for the transfer of the genetic material through the cell membrane. A sharp discontinuity, corresponding to the passage of the tip through the cell membrane can be easily detected when monitoring the cellular deformation as a function of the applied force. In order for the transfection to be successful, the tip must reversibly penetrates the membrane without causing disturbance or damage to the cell. Transfection success rate (30%), cell survival, and growth are confirmed by epifluorescence microscopy. This technique provides an alternative tool to the transfection toolbox, allowing the transfection of specific individual cells with minimal disturbance.

Authors:
 [1];  [1];  [2]
  1. Departement de pharmacologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, Que., J1H 5N4 (Canada)
  2. Departement de pharmacologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, Que., J1H 5N4 (Canada). E-mail: michel.grandbois@usherbrooke.ca
Publication Date:
OSTI Identifier:
20979873
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 355; Journal Issue: 3; Other Information: DOI: 10.1016/j.bbrc.2007.01.190; PII: S0006-291X(07)00246-X; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ATOMIC FORCE MICROSCOPY; CELL MEMBRANES; DNA; DNA DAMAGES; GROWTH; PROTEINS

Citation Formats

Cuerrier, Charles M., Lebel, Rejean, and Grandbois, Michel. Single cell transfection using plasmid decorated AFM probes. United States: N. p., 2007. Web. doi:10.1016/j.bbrc.2007.01.190.
Cuerrier, Charles M., Lebel, Rejean, & Grandbois, Michel. Single cell transfection using plasmid decorated AFM probes. United States. doi:10.1016/j.bbrc.2007.01.190.
Cuerrier, Charles M., Lebel, Rejean, and Grandbois, Michel. Fri . "Single cell transfection using plasmid decorated AFM probes". United States. doi:10.1016/j.bbrc.2007.01.190.
@article{osti_20979873,
title = {Single cell transfection using plasmid decorated AFM probes},
author = {Cuerrier, Charles M. and Lebel, Rejean and Grandbois, Michel},
abstractNote = {Eukaryotic cells were individually transfected using commercially available atomic force microscope tips decorated with plasmidic DNA encoding for the fluorescent protein EGFP. In a typical transfection attempt, the tip is forcibly incorporated into the cell thus allowing for the transfer of the genetic material through the cell membrane. A sharp discontinuity, corresponding to the passage of the tip through the cell membrane can be easily detected when monitoring the cellular deformation as a function of the applied force. In order for the transfection to be successful, the tip must reversibly penetrates the membrane without causing disturbance or damage to the cell. Transfection success rate (30%), cell survival, and growth are confirmed by epifluorescence microscopy. This technique provides an alternative tool to the transfection toolbox, allowing the transfection of specific individual cells with minimal disturbance.},
doi = {10.1016/j.bbrc.2007.01.190},
journal = {Biochemical and Biophysical Research Communications},
number = 3,
volume = 355,
place = {United States},
year = {Fri Apr 13 00:00:00 EDT 2007},
month = {Fri Apr 13 00:00:00 EDT 2007}
}
  • A human epidermal cell culture was transformed by transfection with a recombinant plasmid containing simian virus 40 DNA with a deletion at the origin and an antibiotic (neomycin or G418) marker. A calcium phosphate-mediated DNA transfection method was optimized for introducing exogenous DNA into cells maintained in a fully defined medium. The transformed cells were propagated for more than 200 population doublings and did not appear to go through a crisis period. The growth characteristics of the transformed cells were similar to those found in normal epidermal cells. Transformed cells initially transfected with the recombinant plasmid could be propagated formore » more than 30 passages. Actively growing cells could then be repeatedly selected from cell populations based upon their neomycin (G418)-resistant phenotype for at least another 30 passages. Simian virus 40 T-antigen and extrachromosomal DNA containing plasmid- and SV40-specific DNA sequences were detected in the transformed cells. Because of their nononcogenic phenotype and defined growth requirements, the transformed cells provide a model for examining structural changes during cell proliferation and differentiation, and for exploring the multistage carcinogenesis of human epithelial cells.« less
  • Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors.more » However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.« less
  • Nanoscale plasmid DNA (pDNA)/polyethyleneimine (PEI) complexes were fabricated in the aerosol state using a nebulization system consisting of a collison atomizer and a cool-walled diffusion dryer. The aerosol fabricated nanoscale complexes were collected and employed to determine fundamental properties of the complexes, such as size, structure, surface charge, and in vitro gene transfection efficiency and cytotoxicity. The results showed that mass ratio between pDNA and PEI should be optimized to enhance gene transfection efficiency without a significant loss of cell viability. These findings may support practical advancements in the field of nonviral gene delivery.
  • Terminal deoxynucleotidyl transferase was used to add labeled dAMP residues to the 3' end of oligonucleotide probes that hybridize to the 5' end of the neomycin phosphotransferase II gene. Southern hybridization conditions were described in which the sensitivity per unit of exposure time was about 30-fold greater for the tailed probe as compared to the 5'-end-labeled probe. The tailed oligonucleotide probe had the sensitivity per unit of exposure time comparable to that of a nick-translated probe of high specific activity: in 3 h of autoradiographic exposure both easily detected an amount of target equivalent to a single-copy gene in 10more » micrograms of human DNA. The thermal dissociation profiles of 5'-end-labeled and tailed oligonucleotide probes were virtually identical and the tailed oligonucleotide probe was as allele specific as the 5'-end-labeled oligonucleotide probe. The useful lifetime of a 32P-tailed probe was about 1-2 weeks. Finally, by adding 50 35S-labeled nucleotides to the 3' end, we prepared a stable oligonucleotide probe with a sensitivity per unit of exposure time comparable to that of the unstable 5'-32P-labeled oligonucleotide probe.« less
  • The rejoining of single-strand breaks induced by {gamma} irradiation in plasmid DNA under different scavenging conditions is described using human cell extracts. As the scavenging capacity of the irradiated solution increases from 1.5 X 10{sup 7} to 3 X 10{sup 8} s{sup -1} using Tris-HCl as a scavenger, the ratio of single- to double-strand breaks is reduced from {approx}70:1 to 40:1. After irradiation, a proportion of DNA molecules have no initial strand breaks but contain damage that is converted to strand breaks when incubated either at 37{degrees}C or in the presence of cellular extract. Repair of damage by the extractsmore » is dependent upon the scavenging capacity of the irradiated solution. Optimal rejoining is observed when the scavenging capacity is <1.5 X 10{sup 7} s{sup -1}, and results in the repair of some initial strand breaks. As the scavenging capacity increases to 3 X 10{sup 8} s{sup -1} the proportion of breaks repaired is significantly reduced. The relative increase in the yield of double-strand breaks and reduced repairability of single-strand breaks at a scavenging capacity of 3 X 10{sup 8} s{sup -1} is consistent with the concept that the severity of damage increases upon increasing the scavenger concentration. 26 refs., 5 figs., 1 tab.« less