skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

Abstract

Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [3];  [3]
  1. Department of Urology, First Affiliated Hospital, Medical College, Zhejiang University, Qingchun Road 79, Hangzhou 310003, Zhejiang Province (China)
  2. Department of Urology, First Affiliated Hospital, Medical College, Zhejiang University, Qingchun Road 79, Hangzhou 310003, Zhejiang Province (China). E-mail: xielp@zjuem.zju.edu.cn
  3. Department of Urology, University of California San Francisco and Veteran Affairs Medical Center San Francisco, San Francisco, CA (United States)
Publication Date:
OSTI Identifier:
20979835
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 354; Journal Issue: 4; Other Information: DOI: 10.1016/j.bbrc.2007.01.003; PII: S0006-291X(07)00031-9; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APOPTOSIS; BEVERAGES; BLADDER; BORON CHLORIDES; CELL PROLIFERATION; GALLIUM COMPOUNDS; HUMAN POPULATIONS; INHIBITION; MITES; MODULATION; NEOPLASMS; OXYGEN COMPOUNDS; PROTEINS; RADIATION DOSES; TIME DEPENDENCE

Citation Formats

Qin Jie, Xie Liping, Zheng Xiangyi, Wang Yunbin, Bai Yu, Shen Huafeng, Li Longcheng, and Dahiya, Rajvir. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. United States: N. p., 2007. Web. doi:10.1016/j.bbrc.2007.01.003.
Qin Jie, Xie Liping, Zheng Xiangyi, Wang Yunbin, Bai Yu, Shen Huafeng, Li Longcheng, & Dahiya, Rajvir. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. United States. doi:10.1016/j.bbrc.2007.01.003.
Qin Jie, Xie Liping, Zheng Xiangyi, Wang Yunbin, Bai Yu, Shen Huafeng, Li Longcheng, and Dahiya, Rajvir. Fri . "A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins". United States. doi:10.1016/j.bbrc.2007.01.003.
@article{osti_20979835,
title = {A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins},
author = {Qin Jie and Xie Liping and Zheng Xiangyi and Wang Yunbin and Bai Yu and Shen Huafeng and Li Longcheng and Dahiya, Rajvir},
abstractNote = {Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.},
doi = {10.1016/j.bbrc.2007.01.003},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 354,
place = {United States},
year = {Fri Mar 23 00:00:00 EDT 2007},
month = {Fri Mar 23 00:00:00 EDT 2007}
}
  • The green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), has been shown to have anti-carcinogenic effects in several skin tumor models, and efforts are continued to investigate the molecular targets responsible for its cytotoxic effects to cancer cells. Our recent observation that β-catenin is upregulated in skin tumors suggested the possibility that the anti-skin carcinogenic effects of EGCG are mediated, at least in part, through its effects on β-catenin signaling. We have found that treatment of the A431 and SCC13 human skin cancer cell lines with EGCG resulted in reduced cell viability and increased cell death and that these cytotoxic effects were associatedmore » with inactivation of β-catenin signaling. Evidence of EGCG-induced inactivation of β-catenin included: (i) reduced accumulation of nuclear β-catenin; (ii) enhanced levels of casein kinase1α, reduced phosphorylation of glycogen synthase kinase-3β, and increased phosphorylation of β-catenin on critical serine{sup 45,33/37} residues; and (iii) reduced levels of matrix metalloproteinase (MMP)-2 and MMP-9, which are down-stream targets of β-catenin. Treatment of cells with prostaglandin E2 (PGE{sub 2}) enhanced the accumulation of β-catenin and enhanced β-catenin signaling. Treatment with either EGCG or an EP2 antagonist (AH6809) reduced the PGE{sub 2}-enhanced levels of cAMP, an upstream regulator of β-catenin. Inactivation of β-catenin by EGCG resulted in suppression of cell survival signaling proteins. siRNA knockdown of β-catenin in A431 and SCC13 cells reduced cell viability. Collectively, these data suggest that induction of cytotoxicity in skin cancer cells by EGCG is mediated by targeting of β-catenin signaling and that the β-catenin signaling is upregulated by inflammatory mediators. - Highlights: • EGCG inhibits cancer cell viability through inactivation of β-catenin signaling. • Inactivation of β-catenin involves the downregulation of inflammatory mediators. • EGCG inactivates β-catenin in skin cancer cells by inhibition of cAMP and PGE{sub 2}. • siRNA knockdown of β-catenin or COX-2 reduces the viability of cancer cells.« less
  • MicroRNA-101 (miR-101) participates in carcinogenesis and tumor progression in various cancers. However, its biological functions in prostate cancer are still unclear. Here, we demonstrate that miR-101 represents a critical role in regulating cell apoptosis in prostate cancer cells. We first demonstrated that miR-101 treatment promoted apoptosis in DU145 and PC3 cells by using flow cytometric analysis and transmission electron microscopy (TEM). To verify the mechanisms, we identified a novel miR-101 target, Ral binding protein 1 (RLIP76). We found miR-101 transfection significantly suppresses RLIP76 expression, which can transactivate phosphorylation of PI3K-Akt signaling, and resulted in an amplification of Bcl2-induced apoptosis. Furthermore,more » we demonstrated that RLIP76 overexpression could reverse the anti-tumor effects of miR-101 in DU145 and PC3 cells by using flow cytometry assay and MTT assay. Taken together, our results revealed that the effect of miR-101 on prostate cancer cell apoptosis was due to RLIP76 regulation of the PI3K/Akt/Bcl-2 signaling pathway. - Highlights: • miR-101 inhibited prostate cancer cell proliferation and enhanced apoptosis. • miR-101 directly targeted and regulated RLIP76 expression. • miR-101 suppressed PI3K/Akt/Bcl-2 signaling pathway by targeting RLIP76.« less
  • Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level andmore » plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs{sup III}) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs{sup III} induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs{sup III} in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs{sup III} can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.« less
  • Inhibitory heterotrimeric GTP-binding proteins (Gi proteins) mediate a variety of signaling pathways by coupling receptors and effectors to regulate cellular proliferation, differentiation, and apoptosis. However, the role of Gi proteins in the modulation of hydrogen peroxide-induced apoptosis is not clearly understood. Thus, we investigated the effect of Gi proteins on hydrogen peroxide-induced apoptosis and the underlying mechanisms in H1299 human lung cancer cells. The stable expression of constitutively active alpha subunits of Gi1 (G{alpha}i1QL), Gi2, or Gi3 inhibited hydrogen peroxide-induced apoptosis. The expression of G{alpha}i1QL up-regulated Bcl-2 expression, and the knockdown of Bcl-2 with siRNA abolished the anti-apoptotic effect ofmore » G{alpha}i1QL. G{alpha}i1 induced the transcription of Bcl-2 by activation of NF-{kappa}B, which resulted from an increase in NF-{kappa}B p50 protein. We conclude that G{alpha}i1 inhibits hydrogen peroxide-induced apoptosis of H1299 lung cancer cells by up-regulating the transcription of Bcl-2 through a p50-mediated NF-{kappa}B activation.« less
  • (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1more » (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at lethal dose substantially suppresses hepatic Nrf2 pathway.« less