skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

Abstract

Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.

Authors:
 [1];  [1];  [1];  [2]
  1. Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden (Netherlands)
  2. Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden (Netherlands). E-mail: w.j.m.spaan@lumc.nl
Publication Date:
OSTI Identifier:
20977015
Resource Type:
Journal Article
Resource Relation:
Journal Name: Virology; Journal Volume: 361; Journal Issue: 1; Other Information: DOI: 10.1016/j.virol.2007.01.020; PII: S0042-6822(07)00044-X; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; FIBROBLASTS; GENE REGULATION; HEPATITIS; INTERFERON; RNA; SHIELDING; TRANSCRIPTION; TRANSCRIPTION FACTORS; TRANSLOCATION; VIRUSES

Citation Formats

Versteeg, Gijs A., Bredenbeek, Peter J., Worm, Sjoerd H.E. van den, and Spaan, Willy J.M. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. United States: N. p., 2007. Web. doi:10.1016/j.virol.2007.01.020.
Versteeg, Gijs A., Bredenbeek, Peter J., Worm, Sjoerd H.E. van den, & Spaan, Willy J.M. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. United States. doi:10.1016/j.virol.2007.01.020.
Versteeg, Gijs A., Bredenbeek, Peter J., Worm, Sjoerd H.E. van den, and Spaan, Willy J.M. Wed . "Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition". United States. doi:10.1016/j.virol.2007.01.020.
@article{osti_20977015,
title = {Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition},
author = {Versteeg, Gijs A. and Bredenbeek, Peter J. and Worm, Sjoerd H.E. van den and Spaan, Willy J.M.},
abstractNote = {Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.},
doi = {10.1016/j.virol.2007.01.020},
journal = {Virology},
number = 1,
volume = 361,
place = {United States},
year = {Wed Apr 25 00:00:00 EDT 2007},
month = {Wed Apr 25 00:00:00 EDT 2007}
}
  • An expression vector was constructed that carries part of the human BK papovavirus with 0.5 kilobases of (2'-5')oligoadenylate (2-5A) synthetase cDNA inserted in inverted orientation downstream from the virion proteins (VP) promoter and the neomycin-resistance gene neo under the control of a simian virus 40 promoter. Cells transfected with this vector and selected for resistance to the neomycin derivative G418 synthesized RNA complementary to 2-5A synthetase mRNA. These cells lacked 2-5A synthetase activity, and the enzyme was not inducible by interferon. In contrast, 2-5A synthetase was induced in cells transfected with a control vector without the cDNA insert. Such cellsmore » were protected by interferon from RNA viruses, whereas cells lacking 2-5A synthetase were not protected from encephalomyocarditis virus, vesicular stomatitis virus, and Sindbis virus but were fully protected from influenza virus. These findings show that a high level of 2-5A synthetase is required for interferon-induced protection from the cytoplasmic RNA viruses tested.« less
  • Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction bymore » or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.« less
  • Frog virus 3 (FV3) is a large DNA virus that encodes {approx} 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologuemore » of the largest subunit of RNA polymerase II (vPol-II{alpha}). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-II{alpha} triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins.« less
  • Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF andmore » 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.« less
  • Transcription of the type 1 herpes simplex virus (HSV-1) genome in trigeminal ganglia of latently infected mice was studied using in situ hybridization. Probes representative of each temporal gene class were used to determine the regions of the genome that encode the transcripts present in latently infected cells. Probes encoding HSV-1 sequences of the five immediate early genes and representative early (thymidine kinase), early-late (major capsid protein), and late (glycoprotein C) genes were used in these experiments. Of the probes tested, only those encoding the immediate early gene product infected-cell polypeptide (ICP) 0 hybridized to RNA in latently infected tissues.more » Probes containing the other immediate early genes (ICP4, ICP22, ICP27, and ICP47) and the representative early, early-late, and late genes did not hybridize. Two probes covering approx. = 30% of the HSV-1 genome and encoding over 20 early and late transcripts also did not hybridize to RNA in latently infected tissues. These results, with probes spanning > 60% of the HSV-1 genome, suggest that transcription of the HSV-1 genome is restricted to one region in latently infected mouse trigeminal ganglia.« less