skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis

Abstract

Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and {beta}-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 {mu}M sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and {beta}-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of {beta}-catenin and activation of protein kinase C{alpha} (PKC{alpha}) were observed. Inhibition of PKC{alpha} restored VE-cadherin and {beta}-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of {beta}-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKC{alpha}, which leads to increased PY of {beta}-catenin downstream of PKC{alpha} activation. Phosphorylation of {beta}-catenin plausibly severs the association of VE-cadherin and {beta}-catenin,more » which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis.« less

Authors:
 [1];  [2];  [3]
  1. Department of Biomedical and Pharmaceutical Sciences and Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812 (United States). E-mail: flavia.pereira@umontana.edu
  2. Department of Biomedical and Pharmaceutical Sciences and Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812 (United States). E-mail: douglas.coffin@umontana.edu
  3. Department of Biomedical and Pharmaceutical Sciences and Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812 (United States). E-mail: howard.beall@umontana.edu
Publication Date:
OSTI Identifier:
20976907
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 220; Journal Issue: 2; Other Information: DOI: 10.1016/j.taap.2006.12.035; PII: S0041-008X(07)00003-8; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACTIN; ARSENIC; ARTERIOSCLEROSIS; BIOLOGICAL STRESS; ENDOTHELIUM; FIBERS; INHIBITION; MICROTUBULES; PERMEABILITY; PHOSPHORYLATION; SODIUM; TIME DEPENDENCE; TYROSINE

Citation Formats

Pereira, Flavia E., Coffin, J. Douglas, and Beall, Howard D. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis. United States: N. p., 2007. Web. doi:10.1016/j.taap.2006.12.035.
Pereira, Flavia E., Coffin, J. Douglas, & Beall, Howard D. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis. United States. doi:10.1016/j.taap.2006.12.035.
Pereira, Flavia E., Coffin, J. Douglas, and Beall, Howard D. Sun . "Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis". United States. doi:10.1016/j.taap.2006.12.035.
@article{osti_20976907,
title = {Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis},
author = {Pereira, Flavia E. and Coffin, J. Douglas and Beall, Howard D.},
abstractNote = {Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and {beta}-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 {mu}M sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and {beta}-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of {beta}-catenin and activation of protein kinase C{alpha} (PKC{alpha}) were observed. Inhibition of PKC{alpha} restored VE-cadherin and {beta}-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of {beta}-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKC{alpha}, which leads to increased PY of {beta}-catenin downstream of PKC{alpha} activation. Phosphorylation of {beta}-catenin plausibly severs the association of VE-cadherin and {beta}-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis.},
doi = {10.1016/j.taap.2006.12.035},
journal = {Toxicology and Applied Pharmacology},
number = 2,
volume = 220,
place = {United States},
year = {Sun Apr 15 00:00:00 EDT 2007},
month = {Sun Apr 15 00:00:00 EDT 2007}
}
  • Hyperglycemia is believed to be the major cause of diabetic vascular complications involving both microvessels and arteries as in the retina, renal glomeruli, and aorta. It is unclear by which mechanism hyperglycemia is altering the metabolism and functions of vascular cells, although changes in nonenzymatic protein glycosylation and increases in cellular sorbitol levels have been postulated to be involved. Previously, the authors have reported that the elevation of extracellular glucose levels with cultured bovine retinal capillary endothelial cells causes an increase in protein kinase C (PKC) activity of the membranous pool with a parallel decrease in the cytosol without alterationmore » of its total activity. Now they demonstrate that the mechanism for the activation of PKC is due to an enhanced de novo synthesis of diacylglycerol as indicated by a 2-fold increase of ({sup 14}C)diacylglycerol labeling from ({sup 14}C)glucose. The elevated diacylglycerol de novo synthesis is secondarily due to increased formation of precursors derived from glucose metabolism; this formation is enhanced by hyperglycemia as substantiated by elevated ({sup 3}H)glucose conversion into water. This effect of hyperglycemia on PKC is also observed in cultured aortic smooth muscle and endothelial cells and the retina and kidney of diabetic rats, but not in the brain. Since PKC in vascular cells has been shown to modulate hormone receptor turnover, neovascularization in vitro, and cell growth, they propose that this mechanism of enhancing the membranous PKC activities by hyperglycemia plays an important role in the development of diabetic vascular complications.« less
  • The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also inducedmore » by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.« less
  • The effect of activated neutrophils on endothelial monolayer integrity in vitro has been measured by assessing the capacity of endothelial monolayers on polycarbonate filters to exclude /sup 125/I-albumin. Although formylmethionyl-leucyl-phenylalanine (FMLP)-activated neutrophils failed to induce /sup 51/Cr-release or detachment after 4 hours of incubation with endothelial monolayers cultured in polystyrene wells, FMLP-activated neutrophils produced a marked increase in the passage of /sup 125/I-albumin across bovine aortic or pulmonary artery endothelial monolayers on polycarbonate filters. This effect was evident as early as 30 minutes following the addition of FMLP-activated neutrophils to the monolayer and reached 180% over control values at 2more » hours (p . 0.001). Light and transmission electron microscopic examination of the polycarbonate filters exposed to FMLP-activated neutrophils revealed focal disruption of the endothelial monolayers. Chronic granulomatous disease neutrophils produced similar disruption of the endothelial monolayer at 2 hours. Moreover, catalase and superoxide dismutase failed to reduce significantly the neutrophil-mediated increase in /sup 125/I-albumin passage at 2 hours. Cell-free postsecretory supernatants of FMLP-activated neutrophils, leukotriene C4, and platelet activating factor did not induce a significant increase in /sup 125/I-albumin passage across the endothelial monolayers. Of note, FMLP-activated neutrophils from a patient with a congenital abnormality of neutrophil adhesion and chemotaxis did not induce disruption of the monolayer or increase /sup 125/I-albumin passage.« less
  • The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP{sub 2}, for which maximal activity was 60% of that elicited by sn-1,2-diacylglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP{sub 2} and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP{sub 2} and DAG reduced the concentration of Ca{sup 2+} and PS required for activation, (3) the concentration dependences of activation by PIP{sub 2} and DAG depended on themore » concentration of PS, and (4) PIP{sub 2} and DAG complemented one another to achieve maximal activation. On the other hand, PIP{sub 2} activation of the PKC differed from activation by DAG in several respects. With increasing concentrations of PIP{sub 2}, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP{sub 2} did not inhibit ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP{sub 2} enhanced ({sup 3}H)PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. These data establish that PIP{sub 2}, PIP, and PI can function to spare, in part, the PS phospholipid cofactor requirement of PKC, and they demonstrate that PIP{sub 2} but not PIP and PI can function as a lipid activator of PKC by mechanisms distinct from those of DAG and phorbol esters.« less
  • There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrationsmore » (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.« less