skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shear flows at the tokamak edge and their interaction with edge-localized modes

Abstract

Shear flows in the scrape-off layer (SOL) and the edge pedestal region of tokamaks are shown to arise naturally out of transport processes in a magnetohydrodynamic model. In quasi-steady-state conditions, collisional resistivity coupled with a simple bootstrap current model necessarily leads to poloidal and toroidal flows, mainly localized to the edge and SOL. The role of these flows in the grad-B drift direction dependence of the power threshold for the L (low) to H (high) transition, and their effect on core rotation, are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in agreement with observations in Alcator C-Mod [Phys. Plasmas 12, 056111 (2005)]. The effects of these self-consistent flows on linear peeling/ballooning modes and their nonlinear consequences are also examined.

Authors:
 [1]
  1. Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
Publication Date:
OSTI Identifier:
20975056
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 14; Journal Issue: 5; Other Information: DOI: 10.1063/1.2727330; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ALCATOR DEVICE; BALLOONING INSTABILITY; BOOTSTRAP CURRENT; EDGE LOCALIZED MODES; MAGNETOHYDRODYNAMICS; NONLINEAR PROBLEMS; PLASMA; PLASMA CONFINEMENT; PLASMA SCRAPE-OFF LAYER; ROTATION; SHEAR; STEADY-STATE CONDITIONS

Citation Formats

Aydemir, A. Y. Shear flows at the tokamak edge and their interaction with edge-localized modes. United States: N. p., 2007. Web. doi:10.1063/1.2727330.
Aydemir, A. Y. Shear flows at the tokamak edge and their interaction with edge-localized modes. United States. doi:10.1063/1.2727330.
Aydemir, A. Y. Tue . "Shear flows at the tokamak edge and their interaction with edge-localized modes". United States. doi:10.1063/1.2727330.
@article{osti_20975056,
title = {Shear flows at the tokamak edge and their interaction with edge-localized modes},
author = {Aydemir, A. Y.},
abstractNote = {Shear flows in the scrape-off layer (SOL) and the edge pedestal region of tokamaks are shown to arise naturally out of transport processes in a magnetohydrodynamic model. In quasi-steady-state conditions, collisional resistivity coupled with a simple bootstrap current model necessarily leads to poloidal and toroidal flows, mainly localized to the edge and SOL. The role of these flows in the grad-B drift direction dependence of the power threshold for the L (low) to H (high) transition, and their effect on core rotation, are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in agreement with observations in Alcator C-Mod [Phys. Plasmas 12, 056111 (2005)]. The effects of these self-consistent flows on linear peeling/ballooning modes and their nonlinear consequences are also examined.},
doi = {10.1063/1.2727330},
journal = {Physics of Plasmas},
number = 5,
volume = 14,
place = {United States},
year = {Tue May 15 00:00:00 EDT 2007},
month = {Tue May 15 00:00:00 EDT 2007}
}
  • Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D signal decreased. The energy loss per ELM normalized to the total stored energy, W/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.
  • Edge-localized modes (ELMs) are repetitive instabilities that occur in the outer region of tokamak plasmas. This Letter provides new information on and the implications of the evolution of the filament structures observed during ELMs in the MAST tokamak. The filaments exist for the time over which particles are being released into the scrape off layer. They start off at the plasma edge rotating at the velocity of the pedestal, and then decelerate toroidally and accelerate radially outwards. As the filaments propagate radially they remain aligned with the local magnetic field line.
  • This article describes the poloidal plasma particle distribution of type-III edge localized modes (ELMs) in the Mega-Ampere spherical tokamak [R.-J. Akers et al., Phys. Plasmas 9, 3919 (2002)]. A fast imaging camera with 10 {mu}s exposure time is used to record the D{sub {alpha}} light coming from the entire poloidal cross section. Furthermore, three sets of probes, triggered at the same time, acquired at 1 MHz, and located at different poloidal, radial, and toroidal locations in the tokamak are used. ELMs are observed to affect the D{sub {alpha}} emission throughout the low-field scrape-off layer; on the high-field side, however, thismore » effect is found to be small. The results obtained by imaging agree with the pointwise measurements using Langmuir probes. The radial propagation is shown to occur at a speed of 250 m/s, whereas the toroidal convection from the top to the bottom of the plasma is shown to be consistent with a transport at the local sound speed. Strong correlation amplitudes are reported among the probes that are poloidally and toroidally separated by several meters. The study of the cross-correlation coefficients as a function of the frequency indicates that this correlation is caused by the low-frequency component of the signal and that the high-frequency part is not correlated. Consequently, the filamentary structures are interpreted as caused by the onset of turbulence during an ELM and do not constitute the ELM itself.« less
  • Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D{sub {alpha}} signal decreased. The energy loss per ELM normalized to the total stored energy, {delta}W/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.
  • Nonlinear simulations based on the magnetohydrodynamic model have been executed to reveal the dynamics of the ballooning mode in the spherical tokamak plasma. The simulation results have reproduced the characteristic features of the edge-localized mode crash phase, where the filamentary structures are formed along the magnetic field in the edge region, and separated from the core plasma. Moreover, the finite Larmor radius effect is addressed.