skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The impact of small-scale turbulence on laminar magnetic reconnection

Abstract

Initial states in incompressible two-dimensional magnetohydrodynamics that are known to lead to strong current sheets and (laminar) magnetic reconnection are modified by the addition of small-scale turbulent perturbations of various energies. The evolution of these states is computed with the aim of ascertaining the influence of the turbulence on the underlying laminar solution. Two main questions are addressed here: (1) What effect does small-scale turbulence have on the energy dissipation rate of the underlying solution? (2) What is the threshold turbulent perturbation level above which the original laminar reconnective dynamics is no longer recognizable. The simulations show that while the laminar dynamics persist the dissipation rates are largely unaffected by the turbulence, other than modest increases attributable to the additional small length scales present in the new initial condition. The solutions themselves are also remarkably insensitive to small-scale turbulent perturbations unless the perturbations are large enough to undermine the integrity of the underlying cellular flow pattern. Indeed, even initial states that lead to the evolution of small-scale microscopic sheets can survive the addition of modest turbulence. The role of a large-scale organizing background magnetic field is also addressed.

Authors:
; ;  [1];  [2]
  1. School of Physics, University of Sydney, NSW 2006 (Australia)
  2. (New Zealand)
Publication Date:
OSTI Identifier:
20974873
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 14; Journal Issue: 3; Other Information: DOI: 10.1063/1.2458595; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; DISTURBANCES; ENERGY LOSSES; LAMINAR FLOW; MAGNETIC FIELDS; MAGNETIC RECONNECTION; MAGNETOHYDRODYNAMICS; PLASMA; PLASMA SIMULATION; TURBULENCE

Citation Formats

Watson, P. G., Oughton, S., Craig, I. J. D., and Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton. The impact of small-scale turbulence on laminar magnetic reconnection. United States: N. p., 2007. Web. doi:10.1063/1.2458595.
Watson, P. G., Oughton, S., Craig, I. J. D., & Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton. The impact of small-scale turbulence on laminar magnetic reconnection. United States. doi:10.1063/1.2458595.
Watson, P. G., Oughton, S., Craig, I. J. D., and Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton. Thu . "The impact of small-scale turbulence on laminar magnetic reconnection". United States. doi:10.1063/1.2458595.
@article{osti_20974873,
title = {The impact of small-scale turbulence on laminar magnetic reconnection},
author = {Watson, P. G. and Oughton, S. and Craig, I. J. D. and Department of Mathematics, University of Waikato, Private Bag 3105, Hamilton},
abstractNote = {Initial states in incompressible two-dimensional magnetohydrodynamics that are known to lead to strong current sheets and (laminar) magnetic reconnection are modified by the addition of small-scale turbulent perturbations of various energies. The evolution of these states is computed with the aim of ascertaining the influence of the turbulence on the underlying laminar solution. Two main questions are addressed here: (1) What effect does small-scale turbulence have on the energy dissipation rate of the underlying solution? (2) What is the threshold turbulent perturbation level above which the original laminar reconnective dynamics is no longer recognizable. The simulations show that while the laminar dynamics persist the dissipation rates are largely unaffected by the turbulence, other than modest increases attributable to the additional small length scales present in the new initial condition. The solutions themselves are also remarkably insensitive to small-scale turbulent perturbations unless the perturbations are large enough to undermine the integrity of the underlying cellular flow pattern. Indeed, even initial states that lead to the evolution of small-scale microscopic sheets can survive the addition of modest turbulence. The role of a large-scale organizing background magnetic field is also addressed.},
doi = {10.1063/1.2458595},
journal = {Physics of Plasmas},
number = 3,
volume = 14,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • We study processes related to magnetic reconnection and plasma turbulence occurring in the presence of the heliopause (HP) and the heliospheric current sheet. It is shown that the interaction of plasmoids initiated by magnetic reconnection may provide connections between the inner and outer heliosheath and lead to an exchange of particles between the interstellar medium and the solar wind plasma shocked at the heliospheric termination shock. The magnetic reconnection may also cause plasma density and magnetic field compressions in the proximity of the HP. We argue that these phenomena could possibly be detected by the Voyager spacecraft approaching and crossingmore » the HP. These results could clarify the concepts of the ''magnetic highway'' and the ''heliosheath depletion region'' recently proposed to explain recent Voyager 1 observations.« less
  • During collisionless, anti-parallel magnetic reconnection, the electron diffusion layer is the region of both fieldline breaking and plasma mixing. Due to the in-plane electrostatic fields associated with collisionless reconnection, the inflowing plasmas are accelerated towards the X-line and form counter-streaming beams within the unmagnetized diffusion layer. This configuration is inherently unstable to in-plane electrostatic streaming instabilities provided that there is sufficient scale separation between the Debye length λ{sub D} and the electron skin depth c/ω{sub pe}. This scale separation has hitherto not been well resolved in kinetic simulations. Using both 2D fully kinetic simulations and a simple linear model, wemore » demonstrate that these in-plane streaming instabilities generate Debye scale turbulence within the electron diffusion layer at electron temperatures relevant to magnetic reconnection both in the magnetosphere and in laboratory experiments.« less
  • The interaction between interplanetary small-scale magnetic flux ropes and the magnetic field in the ambient solar wind is an important topic in the understanding of the evolution of magnetic structures in the heliosphere. Through a survey of 125 previously reported small flux ropes from 1995 to 2005, we find that 44 of them reveal clear signatures of Alfvenic fluctuations and thus classify them as Alfven wave trains rather than flux ropes. Signatures of magnetic reconnection, generally including a plasma jet of {approx}30 km s{sup -1} within a magnetic field rotational region, are clearly present at boundaries of about 42% ofmore » the flux ropes and 14% of the wave trains. The reconnection exhausts are often observed to show a local increase in the proton temperature, density, and plasma beta. About 66% of the reconnection events at flux rope boundaries are associated with a magnetic field shear angle larger than 90{sup 0} and 73% of them reveal a decrease of 20% or more in the magnetic field magnitude, suggesting a dominance of anti-parallel reconnection at flux rope boundaries. The occurrence rate of magnetic reconnection at flux rope boundaries through the years 1995-2005 is also investigated and we find that it is relatively low around the solar maximum and much higher when approaching solar minima. The average magnetic field depression and shear angle for reconnection events at flux rope boundaries also reveal a similar trend from 1995 to 2005. Our results demonstrate for the first time that boundaries of a substantial fraction of small-scale flux ropes have properties similar to those of magnetic clouds, in the sense that both of them exhibit signatures of magnetic reconnection. The observed reconnection signatures could be related either to the formation of small flux ropes or to the interaction between flux ropes and the interplanetary magnetic fields.« less
  • The kink wave, which has often been observed in coronal loops, is considered as a possibly important energy source contributing to coronal heating. However, its generation has not yet been observed. Here, we report the first observation of kink-wave excitation caused by magnetic reconnection as inferred from Solar Optical Telescope measurements made in the Ca II line. We observed transverse-displacement oscillations on a spicule which propagated upwardly along the spicule trace and originated from the cusp of an inverted Y-shaped structure, where apparently magnetic reconnection occurred. Such transverse oscillation of an individual spicule is interpreted by us to be themore » signature of a kink wave that was excited by magnetic reconnection. We present the height variations of the velocity amplitude, deltav, and the phase speed, C {sub k}, of the kink wave, starting from its source region. The kink wave is found to steepen with height and to evolve into a nonlinear state with a large relative disturbance, yielding a (deltav/C {sub k}) of 0.21 at 5.5 Mm. This nonlinear kink wave seems to be damped in velocity amplitude beyond 5.5 Mm, which may result from the conversion of transverse-fluctuation energy to longitudinal-motion energy required to sustain the spicule. We also estimate the energy flux density carried by the kink wave, and in spite of its attenuation in the transition region conclude it to be sufficient for heating the quiet corona. Our findings shed new light on future modeling of coronal heating and solar wind acceleration involving magnetic reconnection in the chromosphere.« less
  • The interaction between emerging magnetic flux and the pre-existing ambient field has become a 'hot' topic for both numerical simulations and high-resolution observations of the solar atmosphere. The appearance of brightenings and surges during episodes of flux emergence is believed to be a signature of magnetic reconnection processes. We present an analysis of a small-scale flux emergence event in NOAA 10971, observed simultaneously with the Swedish 1 m Solar Telescope on La Palma and the Hinode satellite during a joint campaign in 2007 September. Extremely high-resolution G-band, H{alpha}, and Ca II H filtergrams, Fe I and Na I magnetograms, EUVmore » raster scans, and X-ray images show that the emerging region was associated with chromospheric, transition region and coronal brightenings, as well as with chromospheric surges. We suggest that these features were caused by magnetic reconnection at low altitude in the atmosphere. To support this idea, we perform potential and linear force-free field extrapolations using the FROMAGE service. The extrapolations show that the emergence site is cospatial with a three-dimensional null point, from which a spine originates. This magnetic configuration and the overall orientation of the field lines above the emerging flux region are compatible with the structures observed in the different atmospheric layers and remain stable against variations of the force-free field parameter. Our analysis supports the predictions of recent three-dimensional numerical simulations that energetic phenomena may result from the interaction between emerging flux and the pre-existing chromospheric and coronal field.« less