skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fetal muscle-derived cells can repair dystrophic muscles in mdx mice

Abstract

We have previously reported that CD34{sup +} cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP{sup +}/CD34{sup +} cells or desmin{sup +}/{sup -}LacZ/CD34{sup +} cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. CNRS UMR 6204, Faculte des Sciences et des Techniques, 44322 Nantes Cedex 3 (France)
  2. CNRS UMR 6204, Faculte des Sciences et des Techniques, 44322 Nantes Cedex 3 (France). E-mail: Marie-France.Gardahaut@univ-nantes.fr
Publication Date:
OSTI Identifier:
20972131
Resource Type:
Journal Article
Resource Relation:
Journal Name: Experimental Cell Research; Journal Volume: 313; Journal Issue: 5; Other Information: DOI: 10.1016/j.yexcr.2006.12.021; PII: S0014-4827(06)00526-X; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BIOLOGICAL REPAIR; CELL NUCLEI; FATIGUE; IN VITRO; IN VIVO; IRRADIATION; MICE; MUSCLES; REGENERATION; TRANSPLANTS

Citation Formats

Auda-Boucher, Gwenola, Rouaud, Thierry, Lafoux, Aude, Levitsky, Dmitri, Huchet-Cadiou, Corinne, Feron, Marie, Guevel, Laetitia, Talon, Sophie, Fontaine-Perus, Josiane, and Gardahaut, Marie-France. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice. United States: N. p., 2007. Web. doi:10.1016/j.yexcr.2006.12.021.
Auda-Boucher, Gwenola, Rouaud, Thierry, Lafoux, Aude, Levitsky, Dmitri, Huchet-Cadiou, Corinne, Feron, Marie, Guevel, Laetitia, Talon, Sophie, Fontaine-Perus, Josiane, & Gardahaut, Marie-France. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice. United States. doi:10.1016/j.yexcr.2006.12.021.
Auda-Boucher, Gwenola, Rouaud, Thierry, Lafoux, Aude, Levitsky, Dmitri, Huchet-Cadiou, Corinne, Feron, Marie, Guevel, Laetitia, Talon, Sophie, Fontaine-Perus, Josiane, and Gardahaut, Marie-France. Sat . "Fetal muscle-derived cells can repair dystrophic muscles in mdx mice". United States. doi:10.1016/j.yexcr.2006.12.021.
@article{osti_20972131,
title = {Fetal muscle-derived cells can repair dystrophic muscles in mdx mice},
author = {Auda-Boucher, Gwenola and Rouaud, Thierry and Lafoux, Aude and Levitsky, Dmitri and Huchet-Cadiou, Corinne and Feron, Marie and Guevel, Laetitia and Talon, Sophie and Fontaine-Perus, Josiane and Gardahaut, Marie-France},
abstractNote = {We have previously reported that CD34{sup +} cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP{sup +}/CD34{sup +} cells or desmin{sup +}/{sup -}LacZ/CD34{sup +} cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.},
doi = {10.1016/j.yexcr.2006.12.021},
journal = {Experimental Cell Research},
number = 5,
volume = 313,
place = {United States},
year = {Sat Mar 10 00:00:00 EST 2007},
month = {Sat Mar 10 00:00:00 EST 2007}
}
  • Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here,more » we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.« less
  • Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associatedmore » protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells.« less
  • The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs).more » We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier control occurring in the adult dystrophic brain.« less
  • In skeletal muscles of young mdx female heterozygote mice, there is a mosaic of dystrophin-positive and dystrophin-negative fiber segments. In older animals, there is a marked decline in the number of dystrophin-negative fiber segments. This phenomenon might be due to a fusion of dystrophin-competent satellite cells into the originally dystrophin-negative fiber segments during growth. To study this possibility, soleus muscles of 10-day-old mdx female heterozygotes were gamma irradiated (2000 rads) to inhibit subsequent myosatellite cell proliferation and fusion. In the irradiated soleus muscles of animals at 60 days, the relative amount of dystrophin measured by quantitative immunoblots was not significantlymore » different from that of the contralateral nonirradiated muscles. The prevalence of dystrophin-negative fibers in the 60-day-old irradiated solei was not higher than in the nonirradiated contralateral muscles, implying that dystrophin-competent satellite cell fusion was not a significant factor in the observed conversion. A longitudinal expansion of the cytoplasmic domain of the original dystrophin-competent myonuclei during growth could explain the observed conversion phenomenon.« less
  • The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cellmore » regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.« less