skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed

Abstract

Multimetric indices based on fish and benthic macroinvertebrate assemblages are commonly used to assess the biological integrity of aquatic ecosystems. However, their response to specific stressors is rarely known. We quantified the response of a fish-based index (Mid-Atlantic Highlands Index of Biotic Integrity, MAH-IBI) and a benthic invertebrate-based index (West Virginia Stream Condition Index, WV-SCI) to acid mine drainage (AMD)-related stressors in 46 stream sites within the Cheat River watershed, West Virginia. We also identified specific stressor concentrations at which biological impairment was always or never observed. Water chemistry was extremely variable among tributaries of the Cheat River, and the WV-SCI was highly responsive across a range of AMD stressor levels. Furthermore, impairment to macroinvertebrate communities was observed at relatively low stressor concentrations, especially when compared to state water quality standards. In contrast to the WV-SCI, we found that the MAH-IBI was significantly less responsive to local water quality conditions. Low fish diversity was observed in several streams that possessed relatively good water quality. This pattern was especially pronounced in highly degraded subwatersheds, suggesting that regional conditions may have a strong influence on fish assemblages in this system. Our results indicate that biomonitoring programs in mined watersheds should include bothmore » benthic invertebrates, which are consistent indicators of local conditions, and fishes, which may be indicators of regional conditions. In addition, remediation programs must address the full suite of chemical constituents in AMD and focus on improving linkages among streams within drainage networks to ensure recovery of invertebrate and fish assemblages.« less

Authors:
;  [1]
  1. West Virginia University, Morgantown, WV (United States). Division of Forestry and Natural Resources
Publication Date:
OSTI Identifier:
20969856
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Management; Journal Volume: 39; Journal Issue: 5
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; ACID MINE DRAINAGE; USA; WEST VIRGINIA; RIVERS; WATER CHEMISTRY; WATERSHEDS; ENVIRONMENTAL IMPACTS; COAL MINING; MINING; WATER QUALITY; FISHES; BIOLOGICAL STRESS; SPECIES DIVERSITY; INVERTEBRATES; BIOLOGICAL EFFECTS; APPALACHIAN BASIN; STREAMS

Citation Formats

Freund, Jason, and Petty, J. Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. United States: N. p., 2007. Web. doi:10.1007/s00267-005-0116-3.
Freund, Jason, & Petty, J. Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. United States. doi:10.1007/s00267-005-0116-3.
Freund, Jason, and Petty, J. Tue . "Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed". United States. doi:10.1007/s00267-005-0116-3.
@article{osti_20969856,
title = {Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed},
author = {Freund, Jason and Petty, J.},
abstractNote = {Multimetric indices based on fish and benthic macroinvertebrate assemblages are commonly used to assess the biological integrity of aquatic ecosystems. However, their response to specific stressors is rarely known. We quantified the response of a fish-based index (Mid-Atlantic Highlands Index of Biotic Integrity, MAH-IBI) and a benthic invertebrate-based index (West Virginia Stream Condition Index, WV-SCI) to acid mine drainage (AMD)-related stressors in 46 stream sites within the Cheat River watershed, West Virginia. We also identified specific stressor concentrations at which biological impairment was always or never observed. Water chemistry was extremely variable among tributaries of the Cheat River, and the WV-SCI was highly responsive across a range of AMD stressor levels. Furthermore, impairment to macroinvertebrate communities was observed at relatively low stressor concentrations, especially when compared to state water quality standards. In contrast to the WV-SCI, we found that the MAH-IBI was significantly less responsive to local water quality conditions. Low fish diversity was observed in several streams that possessed relatively good water quality. This pattern was especially pronounced in highly degraded subwatersheds, suggesting that regional conditions may have a strong influence on fish assemblages in this system. Our results indicate that biomonitoring programs in mined watersheds should include both benthic invertebrates, which are consistent indicators of local conditions, and fishes, which may be indicators of regional conditions. In addition, remediation programs must address the full suite of chemical constituents in AMD and focus on improving linkages among streams within drainage networks to ensure recovery of invertebrate and fish assemblages.},
doi = {10.1007/s00267-005-0116-3},
journal = {Environmental Management},
number = 5,
volume = 39,
place = {United States},
year = {Tue May 15 00:00:00 EDT 2007},
month = {Tue May 15 00:00:00 EDT 2007}
}
  • We analyzed seasonal water samples from the Cheat and Tygart Valley river basins, West Virginia, USA, in an attempt to classify streams based on water chemistry in this coal-mining region. We also examined temporal variability among water samples. Principal component analysis identified two important dimensions of variation in water chemistry. This variation was determined largely by mining-related factors (elevated metals, sulfates, and conductivity) and an alkalinity-hardness gradient. Cluster analysis grouped water samples into six types that we described as reference, soft, hard, transitional, moderate acid mine drainage, and severe acid mine drainage. These types were statistically distinguishable in multidimensional space.more » Classification tree analysis confirmed that chemical constituents related to acid mine drainage and acid rain distinguished these six groups. Hard, soft, and severe acid mine drainage type streams were temporally constant compared to streams identified as reference, transitional, and moderate acid mine drainage type, which had a greater tendency to shift to a different water type between seasons. Our research is the first to establish a statistically supported stream classification system in mined watersheds. The results suggest that human-related stressors superimposed on geology are responsible for producing distinct water quality types in this region as opposed to more continuous variation in chemistry that would be expected in an unimpacted setting. These findings provide a basis for simplifying stream monitoring efforts, developing generalized remediation strategies, and identifying specific remediation priorities in mined Appalachian watersheds.« less
  • The Multiple Habitat Sampling Protocol (MHSP) is a bioassessment method designed to assess the ecological health of South Carolina streams on the basis of macroinvertebrate samples collected from natural substrates. The MHSP is computed by averaging the EPT (number of Ephemeroptera, Plecoptera, Trichoptera taxa) and BI (a biotic index that reflects the pollution tolerances of individual taxa) to produce a bioclassification score. The MHSP produced low bioclassification scores that could falsely indicate environmental degradation in some undisturbed, high quality streams in the Sandhills ecoregion. This problem had two causes: (1) the metrics (especially EPT) were significantly related to stream size,more » which confounded stream size effects with environmental impacts, and (2) the scoring criteria for EPT were too high for some Sandhills streams, likely because of unrecognized heterogeneity among the Sandhills streams from which the criteria were derived. We corrected these problems by developing new scoring criteria from ecologically comparable undisturbed streams and by utilizing residuals from regressions of the metrics on stream width to normalize for stream size. The MHSP and related protocols are effective methods for assessing environmental quality but allowances must be made for the effects of stream size and the potential ecological heterogeneity that naturally exists among streams in some ecoregions.« less
  • Surface coal mining with valley fills has impaired the aquatic life in numerous streams in the Central Appalachian Mountains. We characterized macroinvertebrate communities from riffles in 37 small West Virginia streams (10 unmined and 27 mined sites with valley fills) sampled in the spring index period (March-May) and compared the assessment results using family- and genus-level taxonomic data. Specific conductance was used to categorize levels of mining disturbance in mined watersheds as low (<500 {mu} S/cm), medium (500-1000 {mu} S/cm), or high (>1000 {mu} S/cm). Four lines of evidence indicate that mining activities impair biological condition of streams: shift inmore » species assemblages, loss of Epherneroptera taxa, changes in individual metrics and indices, and differences in water chemistry. Results were consistent whether family- or genus-level data were used. In both family- and genus-level nonmetric multidimensional scaling (NMS) ordinations, mined sites were significantly separated from unmined sites, indicating that shifts in community structure were caused by mining. Several Epherneroptera genera (e.g., Ephemerella, Epeorus, Drunella) and their families (Ephemerellidae, Heptageniidae) were correlated most strongly with the primary NMS axis. These same Ephemeroptera were absent and, thus, eliminated from most of the mined sites. Total Ephemeroptera richness and relative abundance both declined with increasing mining disturbance. Several other metrics, such as richness, composition, tolerance, and diversity, clearly discriminated unmined vs mined sites. The results show that mining activity has had subtle to severe impacts on benthic macroinvertebrate communities and that the biological condition most strongly correlates with a gradient of ionic strength.« less
  • Trawl and hydrological samples were taken at 11 stations once each month January 1968 through December 1969 in an area of Galveston Bay receiving a discharge of heated water from the P. H. Robinson Generating Station. The stations were grouped by location into three areas: (1) an up-bay control area, (2) the discharge area and (3) a down-bay control area. The data from stations in each of the three areas were pooled and three diversity indices, the Shannon-Weaver index (H''), evenness (J) and species richness (D), were calculated for each monthly sample. Analysis of all indices showed marked seasonal differences.more » No significant differences in overall diversity (H'') or evenness indices were observed between years or areas. The species richness index for 1968 was significantly higher than that for 1969 and the discharge area had significantly greater species richness than either control area. The greater species richness in the discharge area may have been related to sample size. In the discharge area, all indices declined when mean surface water temperature was above 35/sup 0/C.« less
  • In light of increasing fish consumption advisories in several states, a comprehensive multimedia database was created to answer a variety of questions. Mercury concentrations in precipitation, lake water and sediment, zooplankton, and fish were measured and analyzed together with extensive watershed and lake chemistry data for 80 lake watersheds in the study region of northeastern Minnesota including the Superior National Forest, Voyageurs National Park, and Boundary Waters Canoe Area Wilderness. Atmospheric deposition of mercury, transport, water column lifetimes, and sedimentation in lakes are determined. The factors relating mercury concentrations within the lake watershed components are analyzed and discussed. The notablemore » correlates with mercury residue levels in northern pike of a standard length and weight (55 cm, 1.0 kg) were mercury concentrations in zooplankton and water, total organic carbon concentration, and pH. The primary source of mercury was found to be of atmospheric origin.« less