skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity

Abstract

We theoretically analyze a single vortex in a spin polarized 3D trapped atomic Fermi gas near a broad Feshbach resonance. Above a critical polarization the Andreev-like bound states inside the core become occupied by the majority spin component. As a result, the local density difference at the core center suddenly rises at low temperatures. This provides a way to visualize the lowest bound state using phase-contrast imaging. As the polarization increases, the core expands gradually and the energy of the lowest bound state decreases.

Authors:
 [1];  [2]; ;  [3]
  1. Department of Physics, Renmin University of China, Beijing 100872 (China)
  2. (Australia)
  3. ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, University of Queensland, Brisbane, Queensland 4072 (Australia)
Publication Date:
OSTI Identifier:
20955437
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review Letters; Journal Volume: 98; Journal Issue: 6; Other Information: DOI: 10.1103/PhysRevLett.98.060406; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOUND STATE; FERMI GAS; POLARIZATION; RESONANCE; SPIN; SPIN ORIENTATION; TRAPPING; UNITARITY

Citation Formats

Hu Hui, ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, University of Queensland, Brisbane, Queensland 4072, Liu Xiaji, and Drummond, Peter D. Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity. United States: N. p., 2007. Web. doi:10.1103/PHYSREVLETT.98.060406.
Hu Hui, ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, University of Queensland, Brisbane, Queensland 4072, Liu Xiaji, & Drummond, Peter D. Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity. United States. doi:10.1103/PHYSREVLETT.98.060406.
Hu Hui, ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, University of Queensland, Brisbane, Queensland 4072, Liu Xiaji, and Drummond, Peter D. Fri . "Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity". United States. doi:10.1103/PHYSREVLETT.98.060406.
@article{osti_20955437,
title = {Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity},
author = {Hu Hui and ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, University of Queensland, Brisbane, Queensland 4072 and Liu Xiaji and Drummond, Peter D.},
abstractNote = {We theoretically analyze a single vortex in a spin polarized 3D trapped atomic Fermi gas near a broad Feshbach resonance. Above a critical polarization the Andreev-like bound states inside the core become occupied by the majority spin component. As a result, the local density difference at the core center suddenly rises at low temperatures. This provides a way to visualize the lowest bound state using phase-contrast imaging. As the polarization increases, the core expands gradually and the energy of the lowest bound state decreases.},
doi = {10.1103/PHYSREVLETT.98.060406},
journal = {Physical Review Letters},
number = 6,
volume = 98,
place = {United States},
year = {Fri Feb 09 00:00:00 EST 2007},
month = {Fri Feb 09 00:00:00 EST 2007}
}
  • Multiply quantized vortices in the BCS-to-BEC (Bose-Einstein condensation) evolution of p-wave resonant Fermi gases are investigated theoretically. The vortex structure and the low-energy quasiparticle states are discussed, based on the self-consistent calculations of the Bogoliubov-de Gennes and gap equations. We reveal the direct relation between the macroscopic structure of vortices, such as particle densities, and the low-lying quasiparticle state. In addition, the net angular momentum for multiply quantized vortices with a vorticity {kappa} is found to be expressed by a simple equation, which reflects the chirality of the Cooper pairing. Hence, the observation of the particle density depletion and themore » measurement of the angular momentum will provide the information on the core-bound state and p-wave superfluidity. Moreover, the details on the zero energy Majorana state are discussed in the vicinity of the BCS-to-BEC evolution. It is demonstrated numerically that the zero energy Majorana state appears in the weak coupling BCS limit only when the vortex winding number is odd. The {kappa} branches of the core-bound states for a vortex state with vorticity {kappa} exist; however, only one of them can be the zero energy. This zero energy state vanishes at the BCS-BEC topological phase transition because of interference between the core-bound and edge-bound states.« less
  • We present a systematic study of quantum phases in a one-dimensional spin-polarized Fermi gas. Three comparative theoretical methods are used to explore the phase diagram at zero temperature: the mean-field theory with either an order parameter in a single-plane-wave form or a self-consistently determined order parameter using the Bogoliubov-de Gennes equations, as well as the exact Bethe ansatz method. We find that a spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov phase, which lies between the fully paired Bardeen-Cooper-Schrieffer (BCS) state and the fully polarized normal state, dominates most of the phase diagram of a uniform gas. The phase transition from the BCS state tomore » the Fulde-Ferrell-Larkin-Ovchinnikov phase is of second order, and therefore there are no phase separation states in one-dimensional homogeneous polarized gases. This is in sharp contrast to the three-dimensional situation, where a phase separation regime is predicted to occupy a very large space in the phase diagram. We conjecture that the prediction of the dominance of the phase separation phases in three dimension could be an artifact of the non-self-consistent mean-field approximation, which is heavily used in the study of three-dimensional polarized Fermi gases. We consider also the effect of a harmonic trapping potential on the phase diagram, and find that in this case the trap generally leads to phase separation, in accord with the experimental observations for a trapped gas in three dimensions. We finally investigate the local fermionic density of states of the Fulde-Ferrell-Larkin-Ovchinnikov ansatz. A two-energy-gap structure appears, which could be used as an experimental probe of the Fulde-Ferrell-Larkin-Ovchinnikov states.« less
  • We study the Fermi gas at unitarity and at T=0 by assuming that, at high polarizations, it is a normal Fermi liquid composed of weakly interacting quasiparticles associated with the minority spin atoms. With a quantum Monte Carlo approach we calculate their effective mass and binding energy, as well as the full equation of state of the normal phase as a function of the concentration x=n{sub {down_arrow}}/n{sub {up_arrow}} of minority atoms. We predict a first order phase transition from normal to superfluid at x{sub c}=0.44 corresponding, in the presence of harmonic trapping, to a critical polarization P{sub c}=(N{sub {up_arrow}}-N{sub {down_arrow}})/(N{submore » {up_arrow}}+N{sub {down_arrow}})=77%. We calculate the radii and the density profiles in the trap and predict that the frequency of the spin dipole mode will be increased by a factor of 1.23 due to interactions.« less
  • We calculate the mean-field thermodynamics of a spherically trapped Fermi gas with unequal spin populations in the unitarity limit, comparing results from the Bogoliubov-de Gennes equations and the local density approximation. We follow the usual mean-field decoupling in deriving the Bogoliubov-de Gennes equations and set up an efficient and accurate method for solving these equations. In the local density approximation we consider locally homogeneous solutions, with a slowly varying order parameter. With a large particle number these two approximation schemes give rise to essentially the same results for various thermodynamic quantities, including the density profiles. This excellent agreement strongly indicatesmore » that the small oscillation of order parameters near the edge of trap, sometimes interpreted as spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov states in previous studies of Bogoliubov-de Gennes equations, is a finite-size effect. We find that a bimodal structure emerges in the density profile of the minority-spin state at finite temperature, as observed in experiments. The superfluid transition temperature as a function of the population imbalance is determined and is shown to be consistent with recent experimental measurements. The temperature dependence of the equation of state is discussed.« less
  • Using density-functional theory in a time-dependent approach, we determine the frequencies of the compressional modes of the normal phase of a Fermi gas at unitarity as a function of its polarization. Our energy functional accounts for the typical elastic deformations exhibited by Landau theory of Fermi liquids. The comparison with the available experiments is biased by important collisional effects affecting both the in-phase and the out-of-phase oscillations even at the lowest temperatures. New experiments in the collisionless regime would provide a crucial test of the applicability of Landau theory to the dynamics of these strongly interacting normal Fermi gases.