skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kilo-Voltage Cone-Beam Computed Tomography Setup Measurements for Lung Cancer Patients; First Clinical Results and Comparison With Electronic Portal-Imaging Device

Abstract

Purpose: Kilovoltage cone-beam computed tomography (CBCT) has been developed to provide accurate soft-tissue and bony setup information. We evaluated clinical CBCT setup data and compared CBCT measurements with electronic portal imaging device (EPID) images for lung cancer patients. Methods and Materials: The setup error for CBCT scans at the treatment unit relative to the planning CT was measured for 62 patients (524 scans). For 19 of these patients (172 scans) portal images were also made. The mean, systematic setup error ({sigma}), and random setup error ({sigma}) were calculated for the CBCT and the EPID. The differences between CBCT and EPID and the rotational setup error derived from the CBCT were also evaluated. An offline shrinking action level correction protocol, based on the CBCT measurements, was used to reduce systematic setup errors and the impact of this protocol was evaluated. Results: The CBCT setup errors were significantly larger than the EPID setup errors for the cranial-caudal and anterior-posterior directions (p < 0.05). The mean overall setup errors after correction measured with the CBCT were 0.2 mm ({sigma} = 1.6 mm, {sigma} 2.9 mm) in the left-right, -0.8 mm ({sigma} = 1.7 mm, {sigma} = 4.0 mm) in cranial-caudal and 0.0 mmmore » ({sigma} = 1.5 mm, {sigma} = 2.0 mm) in the anterior-posterior direction. Using our correction protocol only 2 patients had mean setup errors larger than 5 mm, without this correction protocol 51% of the patients would have had a setup error larger than 5 mm. Conclusion: Use of CBCT scans provided more accurate information concerning the setup of lung cancer patients than did portal imaging.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2]
  1. Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)
  2. Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands). E-mail: j.lebesque@nki.nl
Publication Date:
OSTI Identifier:
20951678
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 68; Journal Issue: 2; Other Information: DOI: 10.1016/j.ijrobp.2007.01.014; PII: S0360-3016(07)00129-0; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BEAMS; CARCINOMAS; COMPARATIVE EVALUATIONS; COMPUTERIZED TOMOGRAPHY; CORRECTIONS; ELECTRIC POTENTIAL; EQUIPMENT; ERRORS; IMAGES; LUNGS; PATIENTS; RADIOTHERAPY

Citation Formats

Borst, Gerben R., Sonke, Jan-Jakob, Betgen, Anja, Remeijer, Peter, Herk, Marcel van, and Lebesque, Joos V.. Kilo-Voltage Cone-Beam Computed Tomography Setup Measurements for Lung Cancer Patients; First Clinical Results and Comparison With Electronic Portal-Imaging Device. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2007.01.014.
Borst, Gerben R., Sonke, Jan-Jakob, Betgen, Anja, Remeijer, Peter, Herk, Marcel van, & Lebesque, Joos V.. Kilo-Voltage Cone-Beam Computed Tomography Setup Measurements for Lung Cancer Patients; First Clinical Results and Comparison With Electronic Portal-Imaging Device. United States. doi:10.1016/j.ijrobp.2007.01.014.
Borst, Gerben R., Sonke, Jan-Jakob, Betgen, Anja, Remeijer, Peter, Herk, Marcel van, and Lebesque, Joos V.. Fri . "Kilo-Voltage Cone-Beam Computed Tomography Setup Measurements for Lung Cancer Patients; First Clinical Results and Comparison With Electronic Portal-Imaging Device". United States. doi:10.1016/j.ijrobp.2007.01.014.
@article{osti_20951678,
title = {Kilo-Voltage Cone-Beam Computed Tomography Setup Measurements for Lung Cancer Patients; First Clinical Results and Comparison With Electronic Portal-Imaging Device},
author = {Borst, Gerben R. and Sonke, Jan-Jakob and Betgen, Anja and Remeijer, Peter and Herk, Marcel van and Lebesque, Joos V.},
abstractNote = {Purpose: Kilovoltage cone-beam computed tomography (CBCT) has been developed to provide accurate soft-tissue and bony setup information. We evaluated clinical CBCT setup data and compared CBCT measurements with electronic portal imaging device (EPID) images for lung cancer patients. Methods and Materials: The setup error for CBCT scans at the treatment unit relative to the planning CT was measured for 62 patients (524 scans). For 19 of these patients (172 scans) portal images were also made. The mean, systematic setup error ({sigma}), and random setup error ({sigma}) were calculated for the CBCT and the EPID. The differences between CBCT and EPID and the rotational setup error derived from the CBCT were also evaluated. An offline shrinking action level correction protocol, based on the CBCT measurements, was used to reduce systematic setup errors and the impact of this protocol was evaluated. Results: The CBCT setup errors were significantly larger than the EPID setup errors for the cranial-caudal and anterior-posterior directions (p < 0.05). The mean overall setup errors after correction measured with the CBCT were 0.2 mm ({sigma} = 1.6 mm, {sigma} 2.9 mm) in the left-right, -0.8 mm ({sigma} = 1.7 mm, {sigma} = 4.0 mm) in cranial-caudal and 0.0 mm ({sigma} = 1.5 mm, {sigma} = 2.0 mm) in the anterior-posterior direction. Using our correction protocol only 2 patients had mean setup errors larger than 5 mm, without this correction protocol 51% of the patients would have had a setup error larger than 5 mm. Conclusion: Use of CBCT scans provided more accurate information concerning the setup of lung cancer patients than did portal imaging.},
doi = {10.1016/j.ijrobp.2007.01.014},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 2,
volume = 68,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 2007},
month = {Fri Jun 01 00:00:00 EDT 2007}
}
  • Purpose: To quantify the differences in setup errors measured with the cone-beam computed tomography (CBCT) and electronic portal image devices (EPID) in breast cancer patients. Methods and Materials: Repeat CBCT scan were acquired for routine offline setup verification in 20 breast cancer patients. During the CBCT imaging fractions, EPID images of the treatment beams were recorded. Registrations of the bony anatomy for CBCT to planning CT and EPID to digitally reconstructed-radiographs (DRRs) were compared. In addition, similar measurements of an anthropomorphic thorax phantom were acquired. Bland-Altman and linear regression analysis were performed for clinical and phantom registrations. Systematic and randommore » setup errors were quantified for CBCT and EPID-driven correction protocols in the EPID coordinate system (U, V), with V parallel to the cranial-caudal axis and U perpendicular to V and the central beam axis. Results: Bland-Altman analysis of clinical EPID and CBCT registrations yielded 4 to 6-mm limits of agreement, indicating that both methods were not compatible. The EPID-based setup errors were smaller than the CBCT-based setup errors. Phantom measurements showed that CBCT accurately measures setup error whereas EPID underestimates setup errors in the cranial-caudal direction. In the clinical measurements, the residual bony anatomy setup errors after offline CBCT-based corrections were {Sigma}{sub U} = 1.4 mm, {Sigma}{sub V} = 1.7 mm, and {sigma}{sub U} = 2.6 mm, {sigma}{sub V} = 3.1 mm. Residual setup errors of EPID driven corrections corrected for underestimation were estimated at {Sigma}{sub U} = 2.2mm, {Sigma}{sub V} = 3.3 mm, and {sigma}{sub U} = 2.9 mm, {sigma}{sub V} = 2.9 mm. Conclusion: EPID registration underestimated the actual bony anatomy setup error in breast cancer patients by 20% to 50%. Using CBCT decreased setup uncertainties significantly.« less
  • Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less
  • Purpose: To evaluate the first clinical results of an off-line adaptive radiotherapy (ART) protocol for prostate cancer using kilovoltage cone-beam computed tomography (CBCT) in combination with a diet and mild laxatives. Methods and Materials: Twenty-three patients began treatment with a planning target volume (PTV) margin of 10 mm. The CBCT scans acquired during the first six fractions were used to generate an average prostate clinical target volume (AV-CTV), and average rectum (AV-Rect). Using these structures, a new treatment plan was generated with a 7-mm PTV margin. Weekly CBCT scans were used to monitor the CTV coverage. A diet and mildmore » laxatives were introduced to improve image quality and reduce prostate motion. Results: Twenty patients were treated with conform ART protocol. For these patients, 91% of the CBCT scans could be used to calculate the AV-CTV and AV-Rect. In 96% of the follow-up CBCT scans, the CTV was located within the average PTV. In the remaining 4%, the prostate extended the PTV by a maximum of 1 mm. Systematic and random errors for organ motion were reduced by a factor of two compared with historical data without diet and laxatives. An average PTV reduction of 29% was achieved. The volume of the AV-Rect that received >65 Gy was reduced by 19%. The mean dose to the anal wall was reduced on average by 4.8 Gy. Conclusions: We safely reduced the high-dose region by 29%. The reduction in irradiated volume led to a significant reduction in the dose to the rectum. The diet and laxatives improved the image quality and tended to reduce prostate motion.« less
  • Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less
  • Purpose: On-board cone-beam computed tomography (CBCT) provides soft tissue information that may improve setup accuracy in patients undergoing accelerated partial breast irradiation (APBI). We used CBCT to assess the residual error in soft tissue after two-dimensional kV/MV alignment based on bony anatomy. We also assessed the dosimetric impact of this error. Methods and Materials: Ten patients undergoing APBI were studied as part of an institutional review board-approved prospective trial. Patients were aligned based on skin/cradle marks plus orthogonal kV/MV images registered based on bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to themore » planning CT using soft tissue information. This 'residual error' and its dosimetric impact was measured. Results: The root-mean-square of the residual error was 3, 4, and 4 mm, in the right-left, anterior-posterior, and superior-inferior directions, respectively. The average vector sum was 6 {+-} 2 mm. Average reductions in mean dose to the lumpectomy cavity, clinical target volume (CTV), and planning target volume were 0.1%, 0.4%, and 1%, respectively. The mean difference in the clinical target and planning target volumes that received 95% of the prescribed dose (V95) were 1% and 4%. Conclusions: In this initial study with a modest number of patients, the residual error in soft tissue was typically <5 mm, and with the field margins used, the resultant dosimetric consequences were modest. In patients immobilized in a customized cradle, setup using orthogonal kV images thus appears accurate and reproducible. The CBCT technique may have particular utility in patients with larger breast volumes or breast deformations. Further studies involving larger numbers of patients are needed to further assess the utility of CBCT.« less