skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy

Abstract

Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.

Authors:
 [1];  [2];  [2]
  1. Department of Radiation Oncology, Erasmus MC-Daniel den Hoed, Rotterdam (Netherlands). E-mail: kruijf.de.w@bvi.nl
  2. Department of Radiation Oncology, Erasmus MC-Daniel den Hoed, Rotterdam (Netherlands)
Publication Date:
OSTI Identifier:
20951624
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 68; Journal Issue: 1; Other Information: DOI: 10.1016/j.ijrobp.2006.11.049; PII: S0360-3016(06)03594-2; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; GLANDS; HEAD; IRRADIATION; LYMPHATIC SYSTEM; NECK; OPTIMIZATION; PATIENTS; PHARYNX; PLANNING; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Kruijf, Wilhelmus de, Heijmen, Ben, and Levendag, Peter C. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.11.049.
Kruijf, Wilhelmus de, Heijmen, Ben, & Levendag, Peter C. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy. United States. doi:10.1016/j.ijrobp.2006.11.049.
Kruijf, Wilhelmus de, Heijmen, Ben, and Levendag, Peter C. 2007. "Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy". United States. doi:10.1016/j.ijrobp.2006.11.049.
@article{osti_20951624,
title = {Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy},
author = {Kruijf, Wilhelmus de and Heijmen, Ben and Levendag, Peter C.},
abstractNote = {Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.},
doi = {10.1016/j.ijrobp.2006.11.049},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 1,
volume = 68,
place = {United States},
year = 2007,
month = 5
}
  • Head and neck squamous cell carcinoma with occult primary site represents a controversial clinical problem. Conventional total mucosal irradiation (TMI) maximizes local control, but at the expense of xerostomia. IMRT has been shown to spare salivary tissue in head and cancer patients. This study has been performed to investigate the potential of IMRT to perform nodal and TMI and also allow parotid gland sparing in this patient group. Conventional radiotherapy (CRT) and IMRT plans were produced for six patients to treat the ipsilateral (involved) post-operative neck (PTV1) and the un-operated contralateral neck and mucosal axis (PTV2). Plans were produced withmore » and without the inclusion of nasopharynx in the PTV2. The potential to improve target coverage and spare the parotid glands was investigated for the IMRT plans. There was no significant difference in the mean doses to the PTV1 using CRT and IMRT (59.7 and 60.0 respectively, p = 0.5). The maximum doses to PTV1 and PTV2 were lower for the IMRT technique as compared to CRT (P = 0.008 and P < 0.0001), respectively, and the minimum doses to PTV1 and PTV2 were significantly higher for IMRT as compared to CRT (P = 0.001 and P = 0.001), respectively, illustrating better dose homogeneity with IMRT. The mean dose to the parotid gland contralateral to PTV1 was significantly lower for IMRT (23.21 {+-} 0.7) as compared to CRT (50.5 {+-} 5.8) (P < 0.0001). There was a significant difference in parotid dose between plans with and without the inclusion of the nasopharynx. IMRT offers improved dose homogeneity in PTV1 and PTV2 and allows for parotid sparing.« less
  • Purpose: To quantify the differences between planned and delivered parotid gland and target doses, and to assess the benefits of daily bone alignment for head and neck cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eleven head and neck cancer patients received two CT scans per week with an in-room CT scanner over the course of their radiotherapy. The clinical IMRT plans, designed with 3-mm to 4-mm planning margins, were recalculated on the repeat CT images. The plans were aligned using the actual treatment isocenter marked with radiopaque markers (BB) and bone alignment to the cervical vertebrae tomore » simulate image-guided setup. In-house deformable image registration software was used to map daily dose distributions to the original treatment plan and to calculate a cumulative delivered dose distribution for each patient. Results: Using conventional BB alignment led to increases in the parotid gland mean dose above the planned dose by 5 to 7 Gy in 45% of the patients (median, 3.0 Gy ipsilateral, p = 0.026; median, 1.0 Gy contralateral, p = 0.016). Use of bone alignment led to reductions relative to BB alignment in 91% of patients (median, 2 Gy; range, 0.3-8.3 Gy; 15 of 22 parotids improved). However, the parotid dose from bone alignment was still greater than planned (median, 1.0 Gy, p = 0.007). Neither approach affected tumor dose coverage. Conclusions: With conventional BB alignment, the parotid gland mean dose was significantly increased above the planned mean dose. Using daily bone alignment reduced the parotid dose compared with BB alignment in almost all patients. A 3- to 4-mm planning margin was adequate for tumor dose coverage.« less
  • Purpose: To discuss the implications of three examples of periparotid recurrence after definitive intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods and Materials: We present 3 patients with HNC who underwent definitive IMRT with concurrent chemotherapy and later had treatment failure in or near a spared parotid gland. Two patients had bilateral multilevel nodal disease, and all had Level II nodal disease ipsilateral to the site of recurrence. The patients were treated using dose-painting IMRT with a dose of 70 Gy to the gross tumor volume and 59.4 Gy or 54 Gy to the high-risk or low-risk clinicalmore » tumor volume, respectively. The parotid glands were spared bilaterally. The patients had not undergone any surgical treatment for HNC before radiotherapy. Results: All patients had treatment failure in the region of a spared parotid gland. Failure in the 2 patients with bilateral multilevel nodal involvement occurred in the periparotid lymph nodes. The third patient developed a dermal metastasis near the tail of a spared parotid gland. On pretreatment imaging, the 2 patients with nodal failure had small nonspecific periparotid nodules that showed no hypermetabolic activity on positron emission tomography. Conclusion: For HNC patients receiving definitive IMRT, nonspecific positron emission tomography-negative periparotid nodules on pretreatment imaging should raise the index of suspicion for subclinical disease in the presence of multilevel or Level II nodal metastases. Additional evaluation of such nodules might be indicated before sparing the ipsilateral parotid gland.« less
  • To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recordedmore » at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.« less
  • Purpose: To compare patterns of disease failure among patients treated with intensity-modulated radiotherapy (IMRT) in conjunction with daily image-guided radiotherapy (IGRT) for head and neck cancer, according to the margins used to expand the clinical target volume (CTV) to create a planning target volume (PTV). Methods and Materials: Two-hundred and twenty-five patients were treated with IMRT for squamous cell carcinoma of the head and neck. Daily IGRT scans were acquired using either kilovoltage or megavoltage volumetric imaging prior to each delivered fraction. The first 95 patients were treated with IMRT with 5-mm CTV-to-PTV margins. The subsequent 130 patients were treatedmore » using 3-mm PTV expansion margins. Results: Two-year estimates of overall survival, local-regional control, and distant metastasis-free survival were 76%, 78%, and 81%, respectively. There were no differences with respect to any of these endpoints among patients treated with 5-mm and 3-mm PTV expansion margins (p > 0.05, all). The 2-year local-regional control rate for patients treated with IMRT with 5-mm and 3-mm PTV margins was 78% and 78%, respectively (p = 0.96). Spatial evaluation revealed no differences in the incidences of marginal failures among those treated with 5-mm and 3-mm PTV margins. Conclusions: The use of 3-mm PTV expansion margins appears adequate and did not increase local-regional failures among patients treated with IMRT for head and neck cancer. These data demonstrate the safety of PTV reduction of less than 5 mm and support current protocols recommending this approach in the setting of daily IGRT.« less