skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predicting Outcome of Patients with High-grade Gliomas After Radiotherapy using Quantitative Analysis of T1-weighted Magnetic Resonance Imaging

Abstract

Purpose: The aim of this study was to test the hypothesis that measuring quantitative changes in signal intensity early after radiotherapy (RT) in the contrast-enhancing tumor rim and nonenhancing core may be a noninvasive marker of early treatment response in patients with high-grade gliomas. Methods and Materials: Twenty patients with high-grade gliomas had magnetic resonance imaging (MRI) performed 1 week before RT, during Weeks 1 and 3 of RT, and every 1 to 3 months after RT as part of a clinical prospective study. Regions of interest (ROI) including contrast-enhancing rim, and the nonenhancing core were defined automatically based on a calculated image of post- to precontrast T1-weighted MRI. Pretreatment T1-weighted MRI signal intensity changes were compared with Weeks 1 and 3 RT and 1 and 3 months post-RT MRI. Clinical and MRI parameters were then tested for prediction of overall survival. Results: Regional T1-weighted signal intensity changes in both the contrast-enhancing rim and the nonenhancing core were observed in all patients during Week 1 and Week 3 of RT. Imaging parameters including signal intensity change within the nonenhancing core after Weeks 1 to 2 RT (p = 0.004), Weeks 3 to 4 RT (p = 0.002) and 1 monthmore » after completion of RT (p 0.002) were predictive of overall survival. Using multivariate analysis including RTOG recursive partitioning analysis (RPA) and signal intensity change, only the signal intensity change in the nonenhancing core at 1 month after RT (p = 0.01) retained significance. Conclusion: Quantitative measurements of T1-weighted MRI signal intensity changes in the nonenhancing tumor core (using ratios of pre-post values) may provide valuable information regarding early response during treatment and improve our ability to predict posttreatment outcome.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [4];  [5];  [2];  [4]
  1. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States). E-mail: ctsien@umich.edu
  2. Department of Neuro-Radiology, University of Michigan, Ann Arbor, MI (United States)
  3. Department of Bio-statistics, University of Michigan, Ann Arbor, MI (United States)
  4. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)
  5. Department of Neurology, University of Michigan, Ann Arbor, MI (United States)
Publication Date:
OSTI Identifier:
20951594
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 5; Other Information: DOI: 10.1016/j.ijrobp.2006.11.020; PII: S0360-3016(06)03492-4; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; GLIOMAS; IMAGES; MULTIVARIATE ANALYSIS; NMR IMAGING; PATIENTS; RADIOTHERAPY; RANDOM PHASE APPROXIMATION

Citation Formats

Tsien, Christina, Gomez-Hassan, Diana, Chenevert, Thomas L., Lee, Julia, Lawrence, Theodore, Haken, Randall K. ten, Junck, Larry R., Ross, Brian, and Cao Yue. Predicting Outcome of Patients with High-grade Gliomas After Radiotherapy using Quantitative Analysis of T1-weighted Magnetic Resonance Imaging. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.11.020.
Tsien, Christina, Gomez-Hassan, Diana, Chenevert, Thomas L., Lee, Julia, Lawrence, Theodore, Haken, Randall K. ten, Junck, Larry R., Ross, Brian, & Cao Yue. Predicting Outcome of Patients with High-grade Gliomas After Radiotherapy using Quantitative Analysis of T1-weighted Magnetic Resonance Imaging. United States. doi:10.1016/j.ijrobp.2006.11.020.
Tsien, Christina, Gomez-Hassan, Diana, Chenevert, Thomas L., Lee, Julia, Lawrence, Theodore, Haken, Randall K. ten, Junck, Larry R., Ross, Brian, and Cao Yue. Sun . "Predicting Outcome of Patients with High-grade Gliomas After Radiotherapy using Quantitative Analysis of T1-weighted Magnetic Resonance Imaging". United States. doi:10.1016/j.ijrobp.2006.11.020.
@article{osti_20951594,
title = {Predicting Outcome of Patients with High-grade Gliomas After Radiotherapy using Quantitative Analysis of T1-weighted Magnetic Resonance Imaging},
author = {Tsien, Christina and Gomez-Hassan, Diana and Chenevert, Thomas L. and Lee, Julia and Lawrence, Theodore and Haken, Randall K. ten and Junck, Larry R. and Ross, Brian and Cao Yue},
abstractNote = {Purpose: The aim of this study was to test the hypothesis that measuring quantitative changes in signal intensity early after radiotherapy (RT) in the contrast-enhancing tumor rim and nonenhancing core may be a noninvasive marker of early treatment response in patients with high-grade gliomas. Methods and Materials: Twenty patients with high-grade gliomas had magnetic resonance imaging (MRI) performed 1 week before RT, during Weeks 1 and 3 of RT, and every 1 to 3 months after RT as part of a clinical prospective study. Regions of interest (ROI) including contrast-enhancing rim, and the nonenhancing core were defined automatically based on a calculated image of post- to precontrast T1-weighted MRI. Pretreatment T1-weighted MRI signal intensity changes were compared with Weeks 1 and 3 RT and 1 and 3 months post-RT MRI. Clinical and MRI parameters were then tested for prediction of overall survival. Results: Regional T1-weighted signal intensity changes in both the contrast-enhancing rim and the nonenhancing core were observed in all patients during Week 1 and Week 3 of RT. Imaging parameters including signal intensity change within the nonenhancing core after Weeks 1 to 2 RT (p = 0.004), Weeks 3 to 4 RT (p = 0.002) and 1 month after completion of RT (p 0.002) were predictive of overall survival. Using multivariate analysis including RTOG recursive partitioning analysis (RPA) and signal intensity change, only the signal intensity change in the nonenhancing core at 1 month after RT (p = 0.01) retained significance. Conclusion: Quantitative measurements of T1-weighted MRI signal intensity changes in the nonenhancing tumor core (using ratios of pre-post values) may provide valuable information regarding early response during treatment and improve our ability to predict posttreatment outcome.},
doi = {10.1016/j.ijrobp.2006.11.020},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 5,
volume = 67,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2007},
month = {Sun Apr 01 00:00:00 EDT 2007}
}
  • Objective: To determine whether changes in tumor volume occur during the course of conformal 3D radiotherapy of high-grade gliomas by use of magnetic resonance imaging (MRI) during treatment and whether these changes had an impact on tumor coverage. Methods and Materials: Between December 2000 and January 2004, 21 patients with WHO Grades 3 to 4 supratentorial malignant gliomas treated with 3D conformal radiotherapy (median dose, 70 Gy) were enrolled in a prospective clinical study. All patients underwent T1-weighted contrast-enhancing and T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging at approximately 1 to 2 weeks before radiotherapy, during radiotherapy (Weeks 1 andmore » 3), and at routine intervals thereafter. All MRI scans were coregistered to the treatment-planning CT. Gross tumor volume (GTV Pre-Rx) was defined from a postoperative T1-weighted contrast-enhancing MRI performed 1 to 2 weeks before start of radiotherapy. A second GTV (GTV Week 3) was defined by use of an MRI performed during Week 3 of radiotherapy. A uniform 0.5 cm expansion of the respective GTV, PTV (Pre-Rx), and PTV (Week 3) was applied to the final boost plan. Dose-volume histograms (DVH) were used to analyze any potential adverse changes in tumor coverage based on Week 3 MRI. Results: All MRI scans were reviewed independently by a neuroradiologist (DGH). Two patients were noted to have multifocal disease at presentation and were excluded from analysis. In 19 cases, changes in the GTV based on MRI at Week 3 during radiotherapy were as follows: 2 cases had an objective decrease in GTV ({>=}50%); 12 cases revealed a slight decrease in the rim enhancement or changes in cystic appearance of the GTV; 2 cases showed no change in GTV; and 3 cases demonstrated an increase in tumor volume. Both cases with objective decreases in GTV during treatment were Grade 3 tumors. No cases of tumor progression were noted in Grade 3 tumors during treatment. In comparison, three of 12 Grade 4 tumors had tumor progression, based on MRI obtained during Week 3 of radiotherapy. Median increase in GTV (Week 3) was 11.7 cc (range, 9.8-21.3). Retrospective DVH analysis of PTV (Pre-Rx) and PTV (Week 3) demonstrated a decrease in V{sub 95%}(PTV volume receiving 95% of the prescribed dose) in those 3 cases. Conclusions: Routine MR imaging during radiotherapy may be essential in ensuring tumor coverage if highly conformal radiotherapy techniques such as stereotactic boost and intensity-modulated radiotherapy are used in dose-escalation trials that utilize smaller treatment margins.« less
  • A 26-year-old woman was treated for a prolactin secreting pituitary adenoma by surgery and radiotherapy (5860 rads). Fourteen months later, she developed right hemiparesis and dysarthria. A T1-weighted magnetic resonance imaging scan using gadolinium contrast showed a small, enhanced lesion in the upper pons. Seven months later, she had a sudden onset of loss of vision, and radiation optic neuropathy was diagnosed. A T1-weighted magnetic resonance imaging scan showed widespread gadolinium-enhanced lesions in the optic chiasm, optic tract, and hypothalamus. Magnetic resonance imaging is indispensable for the early diagnosis of radiation necrosis, which is not visualized by radiography or computedmore » tomography.« less
  • Purpose: To compare contrast-enhanced, T1-weighted, three-dimensional magnetic resonance imaging (CEMR) and T2-weighted magnetic resonance imaging (T2MR) with computed tomography (CT) for prostate brachytherapy seed location for dosimetric calculations. Methods and Materials: Postbrachytherapy prostate MRI was performed on a 1.5 Tesla unit with combined surface and endorectal coils in 13 patients. Both CEMR and T2MR used a section thickness of 3 mm. Spiral CT used a section thickness of 5 mm with a pitch factor of 1.5. All images were obtained in the transverse plane. Two readers using CT and MR imaging assessed brachytherapy seed distribution independently. The dependency of datamore » read by both readers for a specific subject was assessed with a linear mixed effects model. Results: The mean percentage ({+-} standard deviation) values of the readers for seed detection and location are presented. Of 1205 implanted seeds, CEMR, T2MR, and CT detected 91.5% {+-} 4.8%, 78.5% {+-} 8.5%, and 96.1% {+-} 2.3%, respectively, with 11.8% {+-} 4.5%, 8.5% {+-} 3.5%, 1.9% {+-} 1.0% extracapsular, respectively. Assignment to periprostatic structures was not possible with CT. Periprostatic seed assignments for CEMR and T2MR, respectively, were as follows: neurovascular bundle, 3.5% {+-} 1.6% and 2.1% {+-} 0.9%; seminal vesicles, 0.9% {+-} 1.8% and 0.3% {+-} 0.7%; periurethral, 7.1% {+-} 3.3% and 5.8% {+-} 2.9%; penile bulb, 0.6% {+-} 0.8% and 0.3% {+-} 0.6%; Denonvillier's Fascia/rectal wall, 0.5% {+-} 0.6% and 0%; and urinary bladder, 0.1% {+-} 0.3% and 0%. Data dependency analysis showed statistical significance for the type of imaging but not for reader identification. Conclusion: Both enumeration and localization of implanted seeds are readily accomplished with CEMR. Calculations with MRI dosimetry do not require CT data. Dose determinations to specific extracapsular sites can be obtained with MRI but not with CT.« less
  • Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe insidemore » a no. 15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 deg. C for the entire heating time and 0.85 deg. C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 deg. C and during the period of steady state was 0.62 deg. C. Conclusions: The data show that for evaluable treatments, excellent correlation ({Delta}T<1 deg. C) of MRTI-ROI and invasive measurements can be achieved, but that motion and other artifacts are still serious challenges that must be overcome in future work.« less
  • Purpose: To evaluate diffusion-weighted (DW)-MRI as a noninvasive tool to investigate major salivary gland function before and after radiotherapy (RT) for head and neck cancer (HNC). Methods and Materials: DW-MRI was performed in 8 HNC patients before and after parotid-sparing RT (mean dose to the contralateral parotid gland <26 Gy). A DW sequence was performed once at rest and then repeated continuously during salivary stimulation. Apparent diffusion coefficient (ADC) maps for both parotid and submandibular glands were calculated. Findings were compared with salivary gland scintigraphy. Results: Before RT, the mean ADC value at rest was significantly lower in the parotidmore » than in the submandibular glands. During the first 5 min of stimulation, the ADC value of the salivary glands showed a decrease, followed by a steady increase until a peak ADC, significantly higher than the baseline value, was reached after a median of 17 min. The baseline ADC value at rest was significantly higher after RT than before RT in the nonspared salivary glands but not in the spared parotid glands. In the contralateral parotid glands, the same response was seen as before RT. This pattern was completely lost in the nonspared glands. These results corresponded with remaining or loss of salivary function, respectively, as confirmed by salivary gland scintigraphy. Conclusions: Diffusion-weighted-MRI allows noninvasive evaluation of functional changes in the major salivary glands after RT and is a promising tool for investigating radiation-induced xerostomia.« less