skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superfluidity versus Anderson Localization in a Dilute Bose Gas

Abstract

We consider the motion of a quasi-one-dimensional beam of Bose-Einstein condensed particles in a disordered region of finite extent. Interaction effects lead to the appearance of two distinct regions of stationary flow. One is subsonic and corresponds to superfluid motion. The other one is supersonic and dissipative and shows Anderson localization. We compute analytically the interaction-dependent localization length. We also explain the disappearance of the supersonic stationary flow for large disordered samples.

Authors:
; ;  [1];  [2]
  1. Laboratoire de Physique Theorique et Modeles Statistiques, CNRS, Universite Paris Sud, UMR8626, 91405 Orsay Cedex (France)
  2. Institut fuer Theoretische Physik, Universitaet Regensburg, 93040 Regensburg (Germany)
Publication Date:
OSTI Identifier:
20951386
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review Letters; Journal Volume: 98; Journal Issue: 21; Other Information: DOI: 10.1103/PhysRevLett.98.210602; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOSE-EINSTEIN GAS; INTERACTIONS; ONE-DIMENSIONAL CALCULATIONS; PARTICLES; SUPERFLUIDITY

Citation Formats

Paul, T., Leboeuf, P., Pavloff, N., and Schlagheck, P. Superfluidity versus Anderson Localization in a Dilute Bose Gas. United States: N. p., 2007. Web. doi:10.1103/PHYSREVLETT.98.210602.
Paul, T., Leboeuf, P., Pavloff, N., & Schlagheck, P. Superfluidity versus Anderson Localization in a Dilute Bose Gas. United States. doi:10.1103/PHYSREVLETT.98.210602.
Paul, T., Leboeuf, P., Pavloff, N., and Schlagheck, P. Fri . "Superfluidity versus Anderson Localization in a Dilute Bose Gas". United States. doi:10.1103/PHYSREVLETT.98.210602.
@article{osti_20951386,
title = {Superfluidity versus Anderson Localization in a Dilute Bose Gas},
author = {Paul, T. and Leboeuf, P. and Pavloff, N. and Schlagheck, P.},
abstractNote = {We consider the motion of a quasi-one-dimensional beam of Bose-Einstein condensed particles in a disordered region of finite extent. Interaction effects lead to the appearance of two distinct regions of stationary flow. One is subsonic and corresponds to superfluid motion. The other one is supersonic and dissipative and shows Anderson localization. We compute analytically the interaction-dependent localization length. We also explain the disappearance of the supersonic stationary flow for large disordered samples.},
doi = {10.1103/PHYSREVLETT.98.210602},
journal = {Physical Review Letters},
number = 21,
volume = 98,
place = {United States},
year = {Fri May 25 00:00:00 EDT 2007},
month = {Fri May 25 00:00:00 EDT 2007}
}
  • Superfluid /sup 4/He films adsorbed on porous Vycor glass have been studied in the low-density limit where the superfluid interparticle spacing is more than an order of magnitude greater than the atomic hard-core diameter. For the lowest transition temperatures observed, the influence of critical fluctuations near T/sub c/ is much reduced and a range of crossover to behavior more characteristic of the dilute Bose gas is observed.
  • We develop a model for a Bose fluid in a confined potential to study a new quantum phase caused by the localization of the Bose-Einstein condensate and the disappearance of superfluidity which was recently observed in liquid 4He in porous glass at high pressures. The critical pressure for the transition to this phase can be defined by our new analytical criterion, which assumes that the size of the localized Bose-Einstein condensate is comparable to the scale of confinement. The critical pressure is quantitatively consistent with observations without free parameters.
  • The one-dimensional propagation of waves in a bichromatic potential may be modeled by the Aubry-Andre Hamiltonian. This, in turn, presents a localization transition that has been observed in recent experiments using ultracold atoms or light. It is shown here that, in contrast to the Anderson model, the localization mechanism has a classical origin, namely it is not due to a quantum suppression of a classically allowed transport process, but rather is produced by a trapping by the potential. Explicit comparisons with the Anderson model as well as with experiments are presented.
  • The crossover from ideal-Bose-gas behavior to nonclassical, XY-like criticality in a dilute, interacting Bose fluid is considered in detail with emphasis on the superfluid density, rho/sub s/(T), below the transition. A general discussion of crossover scaling in constrained systems shows that rho/sub s/ and other temperature-dependent thermodynamic functions at controlled overall density can be expressed in terms of universal scaling functions. The finite-temperature Green's function formalism is used to calculate the associated linear scaling fields and the crossover exponent exactly for all dimensionalities d>2, scaling predictions, including logarithmic singularities just at d = 3, being checked via second-order computations. Amore » mapping of the Bose problem onto the classical s/sup 4/ spin model is achieved which is asymptotically exact in the critical region. In this way, previously known renormalization-group results are used to calculate the scaling functions for rho/sub s/, for the off-diagonal susceptibility, etc., to first order in epsilon = 4-d. Good agreement is found with the experimental measurements by Reppy and co-workers of rho/sub s/(T) for helium absorbed at low coverages in Vycor glass (of pore size 50--80 A). An effective-mass ratio m(/mapprox. =1.5, and an effective-scattering-length ratio a(/aapprox. =1.3 are indicated for mobile helium in the Vycor (although the irregular character of Vycor has not, at this point, been fully allowed for in the theory).« less
  • We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime tomore » the Anderson localized case within realistic experimental parameters.« less