skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of Decoherence of Electron Waves and Visualization of the Quantum-Classical Transition

Abstract

Controlled decoherence of free electrons due to Coulomb interaction with a truly macroscopic environment, the electron (and phonon) gas inside a semiconducting plate, is studied experimentally. The quantitative results are compared with different theoretical models. The experiment confirms the main features of the theory of decoherence and can be interpreted in terms of which-path information. In contrast to previous model experiments on decoherence, the obtained interferograms directly visualize the transition from quantum to classical.

Authors:
;  [1]
  1. Institut fuer Angewandte Physik, Universitaet Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)
Publication Date:
OSTI Identifier:
20951361
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review Letters; Journal Volume: 98; Journal Issue: 20; Other Information: DOI: 10.1103/PhysRevLett.98.200402; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ELECTRONS; MATHEMATICAL MODELS; PHONONS; QUANTUM DECOHERENCE; QUANTUM MECHANICS

Citation Formats

Sonnentag, Peter, and Hasselbach, Franz. Measurement of Decoherence of Electron Waves and Visualization of the Quantum-Classical Transition. United States: N. p., 2007. Web. doi:10.1103/PHYSREVLETT.98.200402.
Sonnentag, Peter, & Hasselbach, Franz. Measurement of Decoherence of Electron Waves and Visualization of the Quantum-Classical Transition. United States. doi:10.1103/PHYSREVLETT.98.200402.
Sonnentag, Peter, and Hasselbach, Franz. Fri . "Measurement of Decoherence of Electron Waves and Visualization of the Quantum-Classical Transition". United States. doi:10.1103/PHYSREVLETT.98.200402.
@article{osti_20951361,
title = {Measurement of Decoherence of Electron Waves and Visualization of the Quantum-Classical Transition},
author = {Sonnentag, Peter and Hasselbach, Franz},
abstractNote = {Controlled decoherence of free electrons due to Coulomb interaction with a truly macroscopic environment, the electron (and phonon) gas inside a semiconducting plate, is studied experimentally. The quantitative results are compared with different theoretical models. The experiment confirms the main features of the theory of decoherence and can be interpreted in terms of which-path information. In contrast to previous model experiments on decoherence, the obtained interferograms directly visualize the transition from quantum to classical.},
doi = {10.1103/PHYSREVLETT.98.200402},
journal = {Physical Review Letters},
number = 20,
volume = 98,
place = {United States},
year = {Fri May 18 00:00:00 EDT 2007},
month = {Fri May 18 00:00:00 EDT 2007}
}
  • We study coherent superpositions of clockwise and anticlockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of a famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D{sub 2} chemical reaction. Thus we demonstrate the quantum-classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.
  • We investigate the phenomenon of sudden transition between classical and quantum decoherence in the study of quantum discord for a dissipative cavity QED system, which consists of two noninteracting two-level atoms, each trapped in a dissipative cavity. It is found that the quantum discord between the two atoms, which are prepared initially in the X-type quantum states, is not destroyed by the dissipation of the cavities for a finite time interval, and the stationary quantum discord can arise in the interaction of atoms with cavities as the time approaches infinity. The transition time is sensitive to the initial state parametermore » of the two atoms and the mean photon number of the coherent field. Interestingly, the quantum discord between the two atoms is completely unaffected by the dissipation of the cavities if we choose the suitable value of the ratio, which depends on the decay rate of the two cavities and the atom-field coupling constant.« less
  • The key factors that distinguish algorithms for nonadiabatic mixed quantum/classical (MQC) simulations from each other are how they incorporate quantum decoherence--the fact that classical nuclei must eventually cause a quantum superposition state to collapse into a pure state--and how they model the effects of decoherence on the quantum and classical subsystems. Most algorithms use distinct mechanisms for modeling nonadiabatic transitions between pure quantum basis states ('surface hops') and for calculating the loss of quantum-mechanical phase information (e.g., the decay of the off-diagonal elements of the density matrix). In our view, however, both processes should be unified in a single descriptionmore » of decoherence. In this paper, we start from the density matrix of the total system and use the frozen Gaussian approximation for the nuclear wave function to derive a nuclear-induced decoherence rate for the electronic degrees of freedom. We then use this decoherence rate as the basis for a new nonadiabatic MQC molecular-dynamics (MD) algorithm, which we call mean-field dynamics with stochastic decoherence (MF-SD). MF-SD begins by evolving the quantum subsystem according to the time-dependent Schroedinger equation, leading to mean-field dynamics. MF-SD then uses the nuclear-induced decoherence rate to determine stochastically at each time step whether the system remains in a coherent mixed state or decoheres. Once it is determined that the system should decohere, the quantum subsystem undergoes an instantaneous total wave-function collapse onto one of the adiabatic basis states and the classical velocities are adjusted to conserve energy. Thus, MF-SD combines surface hops and decoherence into a single idea: decoherence in MF-SD does not require the artificial introduction of reference states, auxiliary trajectories, or trajectory swarms, which also makes MF-SD much more computationally efficient than other nonadiabatic MQC MD algorithms. The unified definition of decoherence in MF-SD requires only a single ad hoc parameter, which is not adjustable but instead is determined by the spatial extent of the nonadiabatic coupling. We use MF-SD to solve a series of one-dimensional scattering problems and find that MF-SD is as quantitatively accurate as several existing nonadiabatic MQC MD algorithms and significantly more accurate for some problems.« less
  • We explore an instantaneous decoherence correction (IDC) approach for the decoherence and energy relaxation in the quantum-classical dynamics of charge transport in organic semiconducting crystals. These effects, originating from environmental fluctuations, are essential ingredients of the carrier dynamics. The IDC is carried out by measurement-like operations in the adiabatic representation. While decoherence is inherent in the IDC, energy relaxation is taken into account by considering the detailed balance through the introduction of energy-dependent reweighing factors, which could be either Boltzmann (IDC-BM) or Miller-Abrahams (IDC-MA) type. For a non-diagonal electron-phonon coupling model, it is shown that IDC tends to enhance diffusionmore » while energy relaxation weakens this enhancement. As expected, both the IDC-BM and IDC-MA achieve a near-equilibrium distribution at finite temperatures in the diffusion process, while in the Ehrenfest dynamics the electronic system tends to infinite temperature limit. The resulting energy relaxation times with the two kinds of factors lie in different regimes and exhibit different dependences on temperature, decoherence time, and electron-phonon coupling strength, due to different dominant relaxation processes.« less
  • While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities thatmore » describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.« less