skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Respiratory gating for radiation therapy is not ready for prime time


No abstract prepared.

; ;  [1];  [2]
  1. Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 3; Other Information: DOI: 10.1118/1.2514027; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States

Citation Formats

Li, X. Allen, Keall, Paul J., Orton, Colin G., and Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847. Respiratory gating for radiation therapy is not ready for prime time. United States: N. p., 2007. Web. doi:10.1118/1.2514027.
Li, X. Allen, Keall, Paul J., Orton, Colin G., & Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847. Respiratory gating for radiation therapy is not ready for prime time. United States. doi:10.1118/1.2514027.
Li, X. Allen, Keall, Paul J., Orton, Colin G., and Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847. Thu . "Respiratory gating for radiation therapy is not ready for prime time". United States. doi:10.1118/1.2514027.
title = {Respiratory gating for radiation therapy is not ready for prime time},
author = {Li, X. Allen and Keall, Paul J. and Orton, Colin G. and Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847},
abstractNote = {No abstract prepared.},
doi = {10.1118/1.2514027},
journal = {Medical Physics},
number = 3,
volume = 34,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
  • Purpose: To investigate the effects of breathing variation on gating window internal target volume (ITV{sub GW}) in respiratory gated radiation therapy. Method and Materials: Two-dimensional dynamic MRI (dMRI) of lung motion was acquired in ten volunteers and eight lung cancer patients. Resorted dMRI using 4DCT acquisition method (RedCAM) was generated for selected subjects by simulating the image rebinning process. A dynamic software generated phantom (dSGP) was created by moving a solid circle (to mimic the ''tumor'') with dMRI-determined motion trajectories. The gating window internal target area (ITA{sub GW}, 2D counterpart of ITV{sub GW}) was determined from both RedCAM and dSGP/dMRI.more » Its area (A), major axis (L1), minor axis (L2), and similarity (S) were calculated and compared. Results: In the phantom study of 3 cm tumor, measurements of the ITA{sub GW} from dSGP (A=10.0{+-}1.3 cm{sup 2}, L1=3.8{+-}0.4 cm, and L2=3.3{+-}0.1 cm) are significantly (p<0.001) greater than those from RedCAM (A=8.5{+-}0.7 cm{sup 2}, L1=3.5{+-}0.2 cm, and L2=3.1{+-}0.1 cm). Similarly, the differences are significantly greater (p<0.001) for the 1 cm tumor (A=1.9{+-}0.5 cm{sup 2}, L1=1.9{+-}0.4 cm, and L2=1.3{+-}0.1 cm in dSGP; A=1.3{+-}0.1 cm{sup 2}, L1=1.5{+-}0.2 cm, and L2=1.1{+-}0.1 cm in RedCAM). In patient studies, measurements of the ITA{sub GW} from dMRI (A=15.5{+-}8.2 cm{sup 2}, L1=5.0{+-}1.1 cm, and L2=3.8{+-}1.2 cm) are also significantly greater (p<0.05) than those from RedCAM (A=13.2{+-}8.5 cm{sup 2}, L1=4.3{+-}1.4 cm, and L2=3.7{+-}1.2 cm). Similarities were 0.9{+-}0.1, 0.8{+-}0.1, and 0.8{+-}0.1 in the 3 cm tumor phantom, 1 cm tumor phantom, and patient studies, respectively. Conclusion: ITV{sub GW} can be underestimated by 4DCT due to breathing variations. An additional margin may be needed to account for this potential error in generating a PTV{sub GW}. Cautions need to be taken when generating ITV{sub GW} from 4DCT in respiratory gated radiation therapy, especially for small tumors (<3 cm) with a large motion range (>1 cm).« less
  • Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each ofmore » several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.« less
  • Purpose: AAPM TG-76 report advises lung patients experiencing tumor motion >5mm to use some form of motion management with even smaller limit for complex/special procedures like SBRT. Generally, either respiratory gating or abdominal compression is used for motion management. In this retrospective study, we are using an innovative index, Volumetric Indices (VI) = (GTVnn AND GTV{sub 50+}Xmm)/(GTVnn) to quantify how much of the tumor remains within 1, 2, and 3mm margins throughout the breathing cycle using GTV{sub 50+}Xmm margin on GTV{sub 50}[nn=0,10,20,…90]. Using appropriate limits, VI can provide tumor motion information and to check if RPM gates could have beenmore » used in conjunction with abdominal compression to better manage tumor motion. Methods: 64 SBRT patients with a total of 67 lung tumors were studied. 4DCT scans were taken, fully capturing tumor motion throughout the 10 phases of the breathing cycle. For each phase, Gross Tumor Volume (GTV) was segmented and appropriates structures were defined to determine VI values. For the 2mm margin, VI values less than 0.95 for peripheral lesions and 0.97 for central lesions indicate tumor movement greater than 4mm. VI values for 1mm and 3mm margins were also analyzed signifying tumor motion of 2mm & 6mm, respectively. Results: Of the 64 patients, 35 (55%) had motion greater than 4mm & could have benefited from respiratory gating. For 5/8 (63%) middle lobe lesions, 21/27 (78%) lower lobe lesions, and 10/32 (31%) upper lobe lesions, gating could have resulted in smaller ITV. 32/55 (58%) peripheral lesions and 4/12 (33%) central lesions could have had gating. Average ITV decreased by 1.25cc (11.43%) and average VI increased by 0.11. Conclusion: Out of 64 patients, 55% exhibited motion greater than 4mm even with abdominal compression. Even with abdominalcompression, lung tumors can move >4mm as the degree of pressure which a patient can tolerate, is patient specific.« less
  • Purpose: To investigate quantitatively positioning and dosimetric uncertainties due to 4D-CT intra-phase motion in the internal-target-volume (ITV) associated with radiation therapy using respiratory-gating for patients setup with image-guidance-radiation-therapy (IGRT) using free-breathing or average-phase CT-images. Methods: A lung phantom with an embedded tissue-equivalent target is imaged with CT while it is stationary and moving. Four-sets of structures are outlined: (a) the actual target on CT-images of the stationary-target, (b) ITV on CT-images for the free-moving phantom, (c) ITV’s from the ten different phases (10–100%) and (d) ITV on the CT-images generated from combining 3 phases: 40%–50%–60%. The variations in volume, lengthmore » and center-position of the ITV’s and their effects on dosimetry during dose delivery for patients setup with image-guidance are investigated. Results: Intra-phase motion due to breathing affects the volume, center position and length of the ITVs from different respiratory-phases. The ITV’s vary by about 10% from one phase to another. The largest ITV is measured on the free breathing CT images and the smallest is on the stationary CT-images. The ITV lengths vary by about 4mm where it may shrink or elongated depending on the motion-phase. The center position of the ITV varies between the different motion-phases which shifts upto 10mm from the stationary-position which is nearly equal to motion-amplitude. This causes systematic shifts during dose delivery with beam gating using certain phases (40%–50%–60%) for patients setup with IGRT using free-breathing or average-phase CT-images. The dose coverage of the ITV depends on the margins used for treatment-planning-volume where margins larger than the motion-amplitudes are needed to ensure dose coverage of the ITV. Conclusion: Volume, length, and center position of the ITV’s change between the different motion phases. Large systematic shifts are induced by respiratory-gating with ITVs on certain phases when patients are setup with IGRT using free-breathing or average-phase CT-images.« less
  • Purpose: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. Methods and Materials: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beammore » is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired kV/MV triangulation for 187 fractions. Results: KIM was successfully used in 197 of 200 fractions. Gating events occurred in 29 fractions (14.5%). In these 29 fractions, the percentage of beam-on time, the prostate displacement was >3 mm from the isocenter position, reduced from 73% without KIM to 24% with KIM-guided gating. Displacements >5 mm were reduced from 16% without KIM to 0% with KIM. The KIM accuracy was measured at <0.3 mm in all 3 dimensions. The KIM precision was <0.6 mm in all 3 dimensions. Conclusions: Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm.« less