skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination

Abstract

To provide more detailed data on organ and effective doses in digital upper gastrointestinal (UGI) fluoroscopy studies of newborns and infants, the present study was conducted employing the time-sequence videotape-analysis technique used in a companion study of newborn and infant voiding cystourethrograms (VCUG). This technique was originally pioneered [O. H. Suleiman, J. Anderson, B. Jones, G. U. Rao, and M. Rosenstein, Radiology 178, 653-658 (1991)] for adult UGI examinations. Individual video frames were analyzed to include combinations of field size, field center, x-ray projection, image intensifier, and magnification mode. Additionally, the peak tube potential and the mA or mAs values for each segment/subsegment or digital photospot were recorded for both the fluoroscopic and radiographic modes of operation. The data from videotape analysis were then used in conjunction with a patient-scalable newborn tomographic computational phantom to report both organ and effective dose values via Monte Carlo radiation transport. The study includes dose estimates for five simulated UGI examinations representative of patients ranging from three to six months of age. Effective dose values for UGI examinations ranged from 1.17 to 6.47 mSv, with a mean of 3.14 mSv and a large standard deviation of 2.15 mSv. The colon, lungs, stomach, liver, andmore » esophagus absorbed doses in sum were found to constitute between 63 and 75% of the effective dose in these UGI studies. Representing 23-30% of the effective dose, the lungs were found to be the most significant organ in the effective dose calculation. Approximately 80-95% of the effective dose is contributed by the dynamic fluoroscopy segments with larger percentages found in longer studies. The mean effective dose for newborn UGI examinations was not found to be statistically different from that seen in newborn VCUG examinations.« less

Authors:
; ; ; ;  [1];  [2];  [2]
  1. Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611-8300 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
20951060
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 2; Other Information: DOI: 10.1118/1.2426405; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; DOSIMETRY; ESOPHAGUS; FLUOROSCOPY; IMAGE INTENSIFIERS; INFANTS; LARGE INTESTINE; LIVER; LUNGS; MONTE CARLO METHOD; PATIENTS; PEDIATRICS; PHANTOMS; RADIATION DOSES; RADIATION TRANSPORT; STOMACH; X RADIATION

Citation Formats

Staton, Robert J., Williams, Jonathon L., Arreola, Manuel M., Hintenlang, David E., Bolch, Wesley E., Department of Radiology, University of Florida/Shands Healthcare, Inc., Gainesville, Florida 32610-0374, and Departments of Nuclear and Radiological Engineering and Biomedical Engineering, University of Florida, Gainesville, Florida 32611-8300. Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination. United States: N. p., 2007. Web. doi:10.1118/1.2426405.
Staton, Robert J., Williams, Jonathon L., Arreola, Manuel M., Hintenlang, David E., Bolch, Wesley E., Department of Radiology, University of Florida/Shands Healthcare, Inc., Gainesville, Florida 32610-0374, & Departments of Nuclear and Radiological Engineering and Biomedical Engineering, University of Florida, Gainesville, Florida 32611-8300. Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination. United States. doi:10.1118/1.2426405.
Staton, Robert J., Williams, Jonathon L., Arreola, Manuel M., Hintenlang, David E., Bolch, Wesley E., Department of Radiology, University of Florida/Shands Healthcare, Inc., Gainesville, Florida 32610-0374, and Departments of Nuclear and Radiological Engineering and Biomedical Engineering, University of Florida, Gainesville, Florida 32611-8300. Thu . "Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination". United States. doi:10.1118/1.2426405.
@article{osti_20951060,
title = {Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination},
author = {Staton, Robert J. and Williams, Jonathon L. and Arreola, Manuel M. and Hintenlang, David E. and Bolch, Wesley E. and Department of Radiology, University of Florida/Shands Healthcare, Inc., Gainesville, Florida 32610-0374 and Departments of Nuclear and Radiological Engineering and Biomedical Engineering, University of Florida, Gainesville, Florida 32611-8300},
abstractNote = {To provide more detailed data on organ and effective doses in digital upper gastrointestinal (UGI) fluoroscopy studies of newborns and infants, the present study was conducted employing the time-sequence videotape-analysis technique used in a companion study of newborn and infant voiding cystourethrograms (VCUG). This technique was originally pioneered [O. H. Suleiman, J. Anderson, B. Jones, G. U. Rao, and M. Rosenstein, Radiology 178, 653-658 (1991)] for adult UGI examinations. Individual video frames were analyzed to include combinations of field size, field center, x-ray projection, image intensifier, and magnification mode. Additionally, the peak tube potential and the mA or mAs values for each segment/subsegment or digital photospot were recorded for both the fluoroscopic and radiographic modes of operation. The data from videotape analysis were then used in conjunction with a patient-scalable newborn tomographic computational phantom to report both organ and effective dose values via Monte Carlo radiation transport. The study includes dose estimates for five simulated UGI examinations representative of patients ranging from three to six months of age. Effective dose values for UGI examinations ranged from 1.17 to 6.47 mSv, with a mean of 3.14 mSv and a large standard deviation of 2.15 mSv. The colon, lungs, stomach, liver, and esophagus absorbed doses in sum were found to constitute between 63 and 75% of the effective dose in these UGI studies. Representing 23-30% of the effective dose, the lungs were found to be the most significant organ in the effective dose calculation. Approximately 80-95% of the effective dose is contributed by the dynamic fluoroscopy segments with larger percentages found in longer studies. The mean effective dose for newborn UGI examinations was not found to be statistically different from that seen in newborn VCUG examinations.},
doi = {10.1118/1.2426405},
journal = {Medical Physics},
number = 2,
volume = 34,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}
  • The time-sequence videotape-analysis methodology, developed [Sulieman et al., Radiology 178, 653-658 (1991)] for use in tissue dose estimations in adult fluoroscopy examinations and utilized [Bolch et al., Med. Phys. 30, 667-680 (2003)] for analog fluoroscopy in newborn patients, has been extended to the study of digital fluoroscopic examinations of the urinary bladder in newborn and infant female patients. Individual frames of the fluoroscopic and radiographic video were analyzed with respect to unique combinations of field size, field center, projection, tube potential, and tube current (mA), and integral tube current (mAs), respectively. The dosimetry study was conducted on five female patientsmore » of ages ranging from four-days to 66 days. For each patient, three different phantoms were utilized: a stylized computational phantom of the reference newborn (3.5 kg), a tomographic computational phantom of the reference newborn (3.5 kg), and (3) a tomographic computational phantom uniformly rescaled to match patient total-body mass. The latter phantom set circumvented the need for mass-dependent rescaling of recorded technique factors (kVp, mA, mAs, etc.), and thus represented the highest degree of patient specificity in the individual organ dose assessment. Effective dose values for the voiding cystourethrogram examination ranged from 0.6 to 3.2 mSv, with a mean and standard deviation of 1.8{+-}0.9 mSv. The ovary and colon equivalent doses contributed in total {approx}65%-80% of the effective dose in these fluoroscopy studies. Percent differences in the effective dose assessed using the two tomographic phantoms (one fixed at 3.5 kg with rescaled technique factors rescaled and one physically rescaled to individual patient masses with no adjustment of recorded technique factors) ranged for -49% to +15%. Percent differences in effective dose found using the 3.5 kg stylized phantom and the 3.5 kg tomographic phantom, both with patient-specific rescaling of technique factors, ranged from -10% to +17%. These differences are due in part to a reduced ovary dose in the tomographic phantom for right posterior oblique (RPO) views when compared to those seen in the stylized phantom.« less
  • A method was developed to quantitatively measure the upper gastrointestinal fluoroscopic examination in order to calculate organ doses. The dynamic examination was approximated with a set of discrete x-ray fields. Once the examination was segmented into discrete x-ray fields appropriate organ dose tables were generated using an existing computer program for organ dose calculations. This, along with knowledge of the radiation exposures associated with each of the fields, enabled the calculation of organ doses for the entire dynamic examination. The protocol involves videotaping the examination while fluoroscopic technique factors, tube current and tube potential, are simultaneously recorded on the audiomore » tracks of the videotape. Subsequent analysis allows the dynamic examination to be segmented into a series of discrete x-ray fields uniquely defined by field size, projection, and anatomical region. The anatomical regions associated with the upper gastrointestinal examination were observed to be the upper, middle, and lower esophagus, the gastroesophageal junction, the stomach, and the duodenum.« less
  • As multidetector computed tomography (CT) serves as an increasingly frequent diagnostic modality, radiation risks to patients became a greater concern, especially for children due to their inherently higher radiosensitivity to stochastic radiation damage. Current dose evaluation protocols include the computed tomography dose index (CTDI) or point detector measurements using anthropomorphic phantoms that do not sufficiently provide accurate information of the organ-averaged absorbed dose and corresponding effective dose to pediatric patients. In this study, organ and effective doses to pediatric patients under helical multislice computed tomography (MSCT) examinations were evaluated using an extensive series of anthropomorphic computational phantoms and Monte Carlomore » radiation transport simulations. Ten pediatric phantoms, five stylized (equation-based) ORNL phantoms (newborn, 1-year, 5-year, 10-year, and 15-year) and five tomographic (voxel-based) UF phantoms (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) were implemented into MCNPX for simulation, where a source subroutine was written to explicitly simulate the helical motion of the CT x-ray source and the fan beam angle and collimator width. Ionization chamber measurements were performed and used to normalize the Monte Carlo simulation results. On average, for the same tube current setting, a tube potential of 100 kVp resulted in effective doses that were 105% higher than seen at 80 kVp, and 210% higher at 120 kVp regardless of phantom type. Overall, the ORNL phantom series was shown to yield values of effective dose that were reasonably consistent with those of the gender-specific UF phantom series for CT examinations of the head, pelvis, and torso. However, the ORNL phantoms consistently overestimated values of the effective dose as seen in the UF phantom for MSCT scans of the chest, and underestimated values of the effective dose for abdominal CT scans. These discrepancies increased with increasing kVp. Finally, absorbed doses to select radiation sensitive organs such as the gonads, red bone marrow, colon, and thyroid were evaluated and compared between phantom types. Specific anatomical problems identified in the stylized phantoms included excessive pelvic shielding of the ovaries in the female phantoms, enhanced red bone marrow dose to the arms and rib cage for chest exams, an unrealistic and constant torso thickness resulting in excessive x-ray attenuation in the regions of the abdominal organs, and incorrect positioning of the thyroid within the stylized phantom neck resulting in insufficient shielding by clavicles and scapulae for lateral beam angles. To ensure more accurate estimates of organ absorbed dose in multislice CT, it is recommended that voxel-based phantoms, potentially tailored to individual body morphometry, be utilized in any future prospective epidemiological studies of medically exposed children.« less
  • Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representativemore » CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated male and female stylized phantoms. Results: For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. Conclusions: Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms.« less
  • A method was developed to estimate tissue doses from the upper gastrointestinal fluoroscopy examination. It involved measuring the technical parameters of the clinical examination, partitioning the dynamic examination into a set of discrete x-ray fields, and generating corresponding tissue does tables with an existing computer program. Knowledge of the radiation exposures associated with each of the fields enabled the calculation of tissue doses for the entire dynamic examination. In this limited sample (eight patients), fluoroscopy times ranged from 108 to 183 seconds. Radiation exposures ranged from 2.3 to 7.2 mC/kg (9.1-28 R), thyroid doses from 0.15 to 3.5 mGy (15-350more » mrad), uterine doses from 0.16 to 1.0 mGy (16-100 mrad), lung doses from 0.90 to 4.2 mGy (90-420 mrad), and active bone marrow doses from 0.81 to 5.4 mGy (81-540 mrad).« less