skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation

Abstract

Inter- and intra-leaf transmission and head scatter can play significant roles in intensity modulated radiation therapy (IMRT)-based treatment deliveries. In order to accurately calculate the dose in the IMRT planning process, it is therefore important that the detailed geometry of the multi-leaf collimator (MLC), in addition to other components in the accelerator treatment head, be accurately modeled. In this paper, we have used the Monte Carlo method (MC) to develop a comprehensive model of the Varian 120 leaf MLC and have compared it against measurements in homogeneous phantom geometries under different IMRT delivery circumstances. We have developed a geometry module within the DPM MC code to simulate the detailed MLC design and the collimating jaws. Tests consisting of leakage, leaf positioning and static MLC shapes were performed to verify the accuracy of transport within the MLC model. The calculations show agreement within 2% in the high dose region for both film and ion-chamber measurements for these static shapes. Clinical IMRT treatment plans for the breast [both segmental MLC (SMLC) and dynamic MLC (DMLC)], prostate (SMLC) and head and neck split fields (SMLC) were also calculated and compared with film measurements. Such a range of cases were chosen to investigate themore » accuracy of the model as a function of modulation in the beamlet pattern, beamlet width, and field size. The overall agreement is within 2%/2 mm of the film data for all IMRT beams except the head and neck split field, which showed differences up to 5% in the high dose regions. Various sources of uncertainties in these comparisons are discussed.« less

Authors:
; ; ; ; ;  [1];  [2];  [2]
  1. University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109-0010 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
20951056
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 2; Other Information: DOI: 10.1118/1.2428405; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; COLLIMATORS; DOSIMETRY; HEAD; IONIZATION CHAMBERS; MAMMARY GLANDS; MODULATION; MONTE CARLO METHOD; NECK; PHANTOMS; PLANNING; PROSTATE; RADIATION DOSES; RADIOTHERAPY; SIMULATION; VERIFICATION

Citation Formats

Tyagi, Neelam, Moran, Jean M., Litzenberg, Dale W., Bielajew, Alex F., Fraass, Benedick A., Chetty, Indrin J., University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109-2104, and University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109-0010. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation. United States: N. p., 2007. Web. doi:10.1118/1.2428405.
Tyagi, Neelam, Moran, Jean M., Litzenberg, Dale W., Bielajew, Alex F., Fraass, Benedick A., Chetty, Indrin J., University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109-2104, & University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109-0010. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation. United States. doi:10.1118/1.2428405.
Tyagi, Neelam, Moran, Jean M., Litzenberg, Dale W., Bielajew, Alex F., Fraass, Benedick A., Chetty, Indrin J., University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109-2104, and University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109-0010. Thu . "Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation". United States. doi:10.1118/1.2428405.
@article{osti_20951056,
title = {Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation},
author = {Tyagi, Neelam and Moran, Jean M. and Litzenberg, Dale W. and Bielajew, Alex F. and Fraass, Benedick A. and Chetty, Indrin J. and University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, Michigan 48109-2104 and University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109-0010},
abstractNote = {Inter- and intra-leaf transmission and head scatter can play significant roles in intensity modulated radiation therapy (IMRT)-based treatment deliveries. In order to accurately calculate the dose in the IMRT planning process, it is therefore important that the detailed geometry of the multi-leaf collimator (MLC), in addition to other components in the accelerator treatment head, be accurately modeled. In this paper, we have used the Monte Carlo method (MC) to develop a comprehensive model of the Varian 120 leaf MLC and have compared it against measurements in homogeneous phantom geometries under different IMRT delivery circumstances. We have developed a geometry module within the DPM MC code to simulate the detailed MLC design and the collimating jaws. Tests consisting of leakage, leaf positioning and static MLC shapes were performed to verify the accuracy of transport within the MLC model. The calculations show agreement within 2% in the high dose region for both film and ion-chamber measurements for these static shapes. Clinical IMRT treatment plans for the breast [both segmental MLC (SMLC) and dynamic MLC (DMLC)], prostate (SMLC) and head and neck split fields (SMLC) were also calculated and compared with film measurements. Such a range of cases were chosen to investigate the accuracy of the model as a function of modulation in the beamlet pattern, beamlet width, and field size. The overall agreement is within 2%/2 mm of the film data for all IMRT beams except the head and neck split field, which showed differences up to 5% in the high dose regions. Various sources of uncertainties in these comparisons are discussed.},
doi = {10.1118/1.2428405},
journal = {Medical Physics},
number = 2,
volume = 34,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}
  • Conventional IMRT dose verification using film and ion chamber measurements is useful but limited with respect to the actual dose distribution received by the patient. The Monte Carlo simulation has been introduced as an independent dose verification tool for IMRT using the patient CT data and MLC leaf sequence files, which validates the dose calculation accuracy but not the plan delivery accuracy. In this work, we propose a Monte Carlo based IMRT dose verification method that reconstructs the patient dose distribution using the patient CT, actual beam data based on the information from the record and verify system (R/V), andmore » the MLC log files obtained during dose delivery that record the MLC leaf positions and MUs delivered. Comparing the Monte Carlo dose calculation with the original IMRT plan using these data simultaneously validates the accuracy of both the IMRT dose calculation and beam delivery. Such log file based Monte Carlo simulations are expected to be employed as a useful and efficient IMRT QA modality to validate the dose delivered to the patient. We have run Monte Carlo simulations for eight IMRT prostate plans using this method and the results for the target dose were consistent with the original CORVUS treatment plans to within 3.0% and 2.0% with and without heterogeneity corrections in the dose calculation. However, significant dose deviations in nearby critical structures have been observed. The results showed that up to 9.0% of the bladder dose and up to 38.0% of the rectum dose, to which leaf position errors were found to contribute <2%, were underestimated by the CORVUS treatment planning system. The concept of average leaf position error has been defined to analyze MLC leaf position errors for an IMRT plan. A linear correlation between the target dose error and the average position error has been found based on log file based Monte Carlo simulations, showing that an average position error of 0.2 mm can result in a target dose error of about 1.0%.« less
  • Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification ofmore » IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057.« less
  • Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
  • A hybrid dose-computation method is designed which accurately accounts for multileaf collimator (MLC)-induced intensity modulation in intensity modulated radiation therapy (IMRT) dose calculations. The method employs Monte Carlo (MC) modeling to determine the fluence modulation caused by the delivery of dynamic or multisegmental (step-and-shoot) MLC fields, and a conventional dose-computation algorithm to estimate the delivered dose to a phantom or a patient. Thus, it determines the IMRT fluence prediction accuracy achievable by analytic methods in the limit that the analytic method includes all details of the MLC leaf transport and scatter. The hybrid method is validated and benchmarked by comparisonmore » with in-phantom film dose measurements, as well as dose calculations from two in-house, and two commercial treatment planning system analytic fluence estimation methods. All computation methods utilize the same dose algorithm to calculate dose to a phantom, varying only in the estimation of the MLC modulation of the incident photon energy fluence. Gamma analysis, with respect to measured two-dimensional (2D) dose planes, is used to benchmark each algorithm's performance. The analyzed fields include static and dynamic test patterns, as well as fields from ten DMLC IMRT treatment plans (79 fields) and five SMLC treatment plans (29 fields). The test fields (fully closed MLC, picket fence, sliding windows of different size, and leaf-tip profiles) cover the extremes of MLC usage during IMRT, while the patient fields represent realistic clinical conditions. Of the methods tested, the hybrid method most accurately reproduces measurements. For the hybrid method, 79 of 79 DMLC field calculations have {gamma}{<=}1 (3%/3 mm) for more than 95% of the points (per field) while for SMLC fields, 27 of 29 pass the same criteria. The analytic energy fluence estimation methods show inferior pass rates, with 76 of 79 DMLC and 24 of 29 SMLC fields having more than 95% of the test points with {gamma}{<=}1 (3%/3 mm). Paired one-way ANOVA tests of the gamma analysis results found that the hybrid method better predicts measurements in terms of both the fraction of points with {gamma}{<=}1 and the average gamma for both 2%/2 mm and 3%/3 mm criteria. These results quantify the enhancement in accuracy in IMRT dose calculations when MC is used to model the MLC field modulation.« less
  • Purpose: Fast and reliable comprehensive quality assurance tools are required to validate the safety and accuracy of complex intensity-modulated radiotherapy (IMRT) plans for prostate treatment. In this study, we evaluated the performance of the COMPASS system for both off-line and potential online procedures for the verification of IMRT treatment plans. Methods and Materials: COMPASS has a dedicated beam model and dose engine, it can reconstruct three-dimensional dose distributions on the patient anatomy based on measured fluences using either the MatriXX two-dimensional (2D) array (offline) or a 2D transmission detector (T2D) (online). For benchmarking the COMPASS dose calculation, various dose-volume indicesmore » were compared against Monte Carlo-calculated dose distributions for five prostate patient treatment plans. Gamma index evaluation and absolute point dose measurements were also performed in an inhomogeneous pelvis phantom using extended dose range films and ion chamber for five additional treatment plans. Results: MatriXX-based dose reconstruction showed excellent agreement with the ion chamber (<0.5%, except for one treatment plan, which showed 1.5%), film ({approx}100% pixels passing gamma criteria 3%/3 mm) and mean dose-volume indices (<2%). The T2D based dose reconstruction showed good agreement as well with ion chamber (<2%), film ({approx}99% pixels passing gamma criteria 3%/3 mm), and mean dose-volume indices (<5.5%). Conclusion: The COMPASS system qualifies for routine prostate IMRT pretreatment verification with the MatriXX detector and has the potential for on-line verification of treatment delivery using T2D.« less