skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions

Abstract

Radiotherapy for pancreatic cancer is limited by the tolerance of local organs at risk (OARs) and frequent overlap of the planning target volume (PTV) and OAR volumes. Using lexicographic ordering (LO), a hierarchical optimization technique, with generalized equivalent uniform dose (gEUD) cost functions, we studied the potential of intensity modulated radiation therapy (IMRT) to increase the dose to pancreatic tumors and to areas of vascular involvement that preclude surgical resection [surgical boost volume (SBV)]. We compared 15 forward planned three-dimensional conformal (3DCRT) and IMRT treatment plans for locally advanced unresectable pancreatic cancer. We created IMRT plans optimized using LO with gEUD-based cost functions that account for the contribution of each part of the resulting inhomogeneous dose distribution. LO-IMRT plans allowed substantial PTV dose escalation compared with 3DCRT; median increase from 52 Gy to 66 Gy (a=-5,p<0.005) and median increase from 50 Gy to 59 Gy (a=-15,p<0.005). LO-IMRT also allowed increases to 85 Gy in the SBV, regardless of a value, along with significant dose reductions in OARs. We conclude that LO-IMRT with gEUD cost functions could allow dose escalation in pancreas tumors with concomitant reduction in doses to organs at risk as compared with traditional 3DCRT.

Authors:
; ; ; ; ; ; ; ;  [1]
  1. Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-0010 (United States)
Publication Date:
OSTI Identifier:
20951046
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 2; Other Information: DOI: 10.1118/1.2426403; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; COST; DOSIMETRY; HEALTH HAZARDS; NEOPLASMS; OPTIMIZATION; PANCREAS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; SURGERY

Citation Formats

Spalding, Aaron C., Jee, Kyung-Wook, Vineberg, Karen, Jablonowski, Marla, Fraass, Benedick A., Pan, Charlie C., Lawrence, Theodore S., Ten Haken, Randall K., and Ben-Josef, Edgar. Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions. United States: N. p., 2007. Web. doi:10.1118/1.2426403.
Spalding, Aaron C., Jee, Kyung-Wook, Vineberg, Karen, Jablonowski, Marla, Fraass, Benedick A., Pan, Charlie C., Lawrence, Theodore S., Ten Haken, Randall K., & Ben-Josef, Edgar. Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions. United States. doi:10.1118/1.2426403.
Spalding, Aaron C., Jee, Kyung-Wook, Vineberg, Karen, Jablonowski, Marla, Fraass, Benedick A., Pan, Charlie C., Lawrence, Theodore S., Ten Haken, Randall K., and Ben-Josef, Edgar. Thu . "Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions". United States. doi:10.1118/1.2426403.
@article{osti_20951046,
title = {Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions},
author = {Spalding, Aaron C. and Jee, Kyung-Wook and Vineberg, Karen and Jablonowski, Marla and Fraass, Benedick A. and Pan, Charlie C. and Lawrence, Theodore S. and Ten Haken, Randall K. and Ben-Josef, Edgar},
abstractNote = {Radiotherapy for pancreatic cancer is limited by the tolerance of local organs at risk (OARs) and frequent overlap of the planning target volume (PTV) and OAR volumes. Using lexicographic ordering (LO), a hierarchical optimization technique, with generalized equivalent uniform dose (gEUD) cost functions, we studied the potential of intensity modulated radiation therapy (IMRT) to increase the dose to pancreatic tumors and to areas of vascular involvement that preclude surgical resection [surgical boost volume (SBV)]. We compared 15 forward planned three-dimensional conformal (3DCRT) and IMRT treatment plans for locally advanced unresectable pancreatic cancer. We created IMRT plans optimized using LO with gEUD-based cost functions that account for the contribution of each part of the resulting inhomogeneous dose distribution. LO-IMRT plans allowed substantial PTV dose escalation compared with 3DCRT; median increase from 52 Gy to 66 Gy (a=-5,p<0.005) and median increase from 50 Gy to 59 Gy (a=-15,p<0.005). LO-IMRT also allowed increases to 85 Gy in the SBV, regardless of a value, along with significant dose reductions in OARs. We conclude that LO-IMRT with gEUD cost functions could allow dose escalation in pancreas tumors with concomitant reduction in doses to organs at risk as compared with traditional 3DCRT.},
doi = {10.1118/1.2426403},
journal = {Medical Physics},
number = 2,
volume = 34,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}
  • Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of {>=}1500/mm{sup 3}, platelets {>=}100,000/mm{sup 3}, creatinine <2 mg/dL, bilirubin <3 mg/dL, and alanine aminotransferase/aspartate aminotransferase {<=}2.5 Multiplication-Sign upper limit of normal. FDR-G (1000 mg/m{sup 2}/100 min intravenously) wasmore » given on days -22 and -15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) {>=}3, neutropenic fever, or deterioration in performance status to {>=}3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local therapy.« less
  • Purpose: Toxicity concerns have limited pelvic nodal prescriptions to doses that may be suboptimal for controlling microscopic disease. In a prospective trial, we tested whether image-guided intensity-modulated radiation therapy (IMRT) can safely deliver escalated nodal doses while treating the prostate with hypofractionated radiotherapy in 5 Vulgar-Fraction-One-Half weeks. Methods and Materials: Pelvic nodal and prostatic image-guided IMRT was delivered to 53 National Comprehensive Cancer Network (NCCN) high-risk patients to a nodal dose of 56 Gy in 2-Gy fractions with concomitant treatment of the prostate to 70 Gy in 28 fractions of 2.5 Gy, and 50 of 53 patients received androgen deprivationmore » for a median duration of 12 months. Results: The median follow-up time was 25.4 months (range, 4.2-57.2). No early Grade 3 Radiation Therapy Oncology Group or Common Terminology Criteria for Adverse Events v.3.0 genitourinary (GU) or gastrointestinal (GI) toxicities were seen. The cumulative actuarial incidence of Grade 2 early GU toxicity (primarily alpha blocker initiation) was 38%. The rate was 32% for Grade 2 early GI toxicity. None of the dose-volume descriptors correlated with GU toxicity, and only the volume of bowel receiving {>=}30 Gy correlated with early GI toxicity (p = 0.029). Maximum late Grades 1, 2, and 3 GU toxicities were seen in 30%, 25%, and 2% of patients, respectively. Maximum late Grades 1 and 2 GI toxicities were seen in 30% and 8% (rectal bleeding requiring cautery) of patients, respectively. The estimated 3-year biochemical control (nadir + 2) was 81.2 {+-} 6.6%. No patient manifested pelvic nodal failure, whereas 2 experienced paraaortic nodal failure outside the field. The six other clinical failures were distant only. Conclusions: Pelvic IMRT nodal dose escalation to 56 Gy was delivered concurrently with 70 Gy of hypofractionated prostate radiotherapy in a convenient, resource-efficient, and well-tolerated 28-fraction schedule. Pelvic nodal dose escalation may be an option in any future exploration of potential benefits of pelvic radiation therapy in high-risk prostate cancer patients.« less
  • Purpose: Although established in the postresection setting, the prognostic value of carbohydrate antigen 19-9 (CA19-9) in unresectable locally advanced pancreatic cancer (LAPC) is less clear. We examined the prognostic utility of CA19-9 in patients with unresectable LAPC treated on a prospective trial of intensity modulated radiation therapy (IMRT) dose escalation with concurrent gemcitabine. Methods and Materials: Forty-six patients with unresectable LAPC were treated at the University of Michigan on a phase 1/2 trial of IMRT dose escalation with concurrent gemcitabine. CA19-9 was obtained at baseline and during routine follow-up. Cox models were used to assess the effect of baseline factorsmore » on freedom from local progression (FFLP), distant progression (FFDP), progression-free survival (PFS), and overall survival (OS). Stepwise forward regression was used to build multivariate predictive models for each endpoint. Results: Thirty-eight patients were eligible for the present analysis. On univariate analysis, baseline CA19-9 and age predicted OS, CA19-9 at baseline and 3 months predicted PFS, gross tumor volume (GTV) and black race predicted FFLP, and CA19-9 at 3 months predicted FFDP. On stepwise multivariate regression modeling, baseline CA19-9, age, and female sex predicted OS; baseline CA19-9 and female sex predicted both PFS and FFDP; and GTV predicted FFLP. Patients with baseline CA19-9 ≤90 U/mL had improved OS (median 23.0 vs 11.1 months, HR 2.88, P<.01) and PFS (14.4 vs 7.0 months, HR 3.61, P=.001). CA19-9 progression over 90 U/mL was prognostic for both OS (HR 3.65, P=.001) and PFS (HR 3.04, P=.001), and it was a stronger predictor of death than either local progression (HR 1.46, P=.42) or distant progression (HR 3.31, P=.004). Conclusions: In patients with unresectable LAPC undergoing definitive chemoradiation therapy, baseline CA19-9 was independently prognostic even after established prognostic factors were controlled for, whereas CA19-9 progression strongly predicted disease progression and death. Future trials should stratify by baseline CA19-9 and incorporate CA19-9 progression as a criterion for progressive disease.« less
  • Purpose: To determine whether previously identified quantitative image features (QIFs) based on {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) (co-occurrence matrix energy and solidity) are able to isolate subgroups of patients who would receive a benefit or detriment from dose escalation in terms of overall survival (OS) or progression-free survival (PFS). Methods and Materials: Subgroups of a previously analyzed 225 patient cohort were generated with the use of 5-percentile increment cutoff values of disease solidity and primary tumor co-occurrence matrix energy. The subgroups were analyzed with a log-rank test to determine whether there was a difference in OS and PFS betweenmore » patients treated with 60 to 70 Gy and those receiving 74 Gy. Results: In the entire patient cohort, there was no statistical difference in terms of OS or PFS between patients receiving 74 Gy and those receiving 60 to 70 Gy. It was qualitatively observed that as disease solidity and primary co-occurrence matrix energy increased, patients receiving 74 Gy had an improved OS and PFS compared with those receiving 60 to 70 Gy. The opposite trend (detriment of receiving 74 Gy) was also observed regarding low values of disease solidity and primary co-occurrence matrix energy. Conclusions: FDG-PET–based QIFs were found to be capable of isolating subgroups of patients who received a benefit or detriment from dose escalation.« less
  • Purpose: To quantify changes in fluorodeoxyglucose (FDG)-avid tumor volume on positron emission tomography/computed tomography (PET/CT) during the course of radiation therapy and examine its potential use in adaptive radiotherapy for tumor dose escalation or normal tissue sparing in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: As part of a pilot study, patients with Stage I-III NSCLC underwent FDG-PET/CT before radiotherapy (RT) and in mid-RT (after 40-50 Gy). Gross tumor volumes were contoured on CT and PET scans obtained before and during RT. Three-dimensional conformal RT plans were generated for each patient, first using only pretreatment CT scans. Mid-RTmore » PET volumes were then used to design boost fields. Results: Fourteen patients with FDG-avid tumors were assessed. Two patients had a complete metabolic response, and 2 patients had slightly increased FDG uptake in the adjacent lung tissue. Mid-RT PET scans were useful in the 10 remaining patients. Mean decreases in CT and PET tumor volumes were 26% (range, +15% to -75%) and 44% (range, +10% to -100%), respectively. Designing boosts based on mid-RT PET allowed for a meaningful dose escalation of 30-102 Gy (mean, 58 Gy) or a reduction in normal tissue complication probability (NTCP) of 0.4-3% (mean, 2%) in 5 of 6 patients with smaller yet residual tumor volumes. Conclusions: Tumor metabolic activity and volume can change significantly after 40-50 Gy of RT. Using mid-RT PET volumes, tumor dose can be significantly escalated or NTCP reduced. Clinical studies evaluating patient outcome after PET-based adaptive RT are ongoing.« less