skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants

Abstract

The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. Itmore » also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications.« less

Authors:
; ; ; ; ; ; ;  [1];  [2];  [2];  [2]
  1. Massachusetts General Hospital, Department of Radiation Oncology, 30 Fruit Street, Boston, Massachusetts 02114 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
20951035
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 2; Other Information: DOI: 10.1118/1.2401042; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; ALGORITHMS; BRAGG CURVE; CLINICAL TRIALS; HOSPITALS; IMAGE SCANNERS; IMPLANTS; IRRADIATION; LUNGS; MASSACHUSETTS; MONTE CARLO METHOD; PHANTOMS; PLASTICS; PMMA; POSITRON COMPUTED TOMOGRAPHY; PROTON BEAMS; RADIOTHERAPY; SKELETON; SPATIAL DISTRIBUTION; VERIFICATION

Citation Formats

Parodi, Katia, Paganetti, Harald, Cascio, Ethan, Flanz, Jacob B., Bonab, Ali A., Alpert, Nathaniel M., Lohmann, Kevin, Bortfeld, Thomas, Massachusetts General Hospital, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114, Siemens Medical Solutions USA, Molecular Imaging, 810 Innovation Drive, Knoxville, Tennessee 37932-2571, and Massachusetts General Hospital, Department of Radiation Oncology, 30 Fruit Street, Boston, Massachusetts 02114. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants. United States: N. p., 2007. Web. doi:10.1118/1.2401042.
Parodi, Katia, Paganetti, Harald, Cascio, Ethan, Flanz, Jacob B., Bonab, Ali A., Alpert, Nathaniel M., Lohmann, Kevin, Bortfeld, Thomas, Massachusetts General Hospital, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114, Siemens Medical Solutions USA, Molecular Imaging, 810 Innovation Drive, Knoxville, Tennessee 37932-2571, & Massachusetts General Hospital, Department of Radiation Oncology, 30 Fruit Street, Boston, Massachusetts 02114. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants. United States. doi:10.1118/1.2401042.
Parodi, Katia, Paganetti, Harald, Cascio, Ethan, Flanz, Jacob B., Bonab, Ali A., Alpert, Nathaniel M., Lohmann, Kevin, Bortfeld, Thomas, Massachusetts General Hospital, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114, Siemens Medical Solutions USA, Molecular Imaging, 810 Innovation Drive, Knoxville, Tennessee 37932-2571, and Massachusetts General Hospital, Department of Radiation Oncology, 30 Fruit Street, Boston, Massachusetts 02114. Thu . "PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants". United States. doi:10.1118/1.2401042.
@article{osti_20951035,
title = {PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants},
author = {Parodi, Katia and Paganetti, Harald and Cascio, Ethan and Flanz, Jacob B. and Bonab, Ali A. and Alpert, Nathaniel M. and Lohmann, Kevin and Bortfeld, Thomas and Massachusetts General Hospital, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 and Siemens Medical Solutions USA, Molecular Imaging, 810 Innovation Drive, Knoxville, Tennessee 37932-2571 and Massachusetts General Hospital, Department of Radiation Oncology, 30 Fruit Street, Boston, Massachusetts 02114},
abstractNote = {The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications.},
doi = {10.1118/1.2401042},
journal = {Medical Physics},
number = 2,
volume = 34,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}
  • Purpose: The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. Methods: A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, themore » marker-defined beam path, determined by the centroid of implanted markers seen in the post-treatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. Results: The less than 2 deg. of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D{sub AP}) and superior-inferior (D{sub SI}) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D{sub AP} or D{sub SI}), 13 studies, referred as motion-after-Tx cases, also show large misalignment between the field edge and the positron emission distribution in lipomatous tissues around the prostate. These motion-after-Tx cases correspond to patients with large changes in volume of rectal gas between the post-Tx and the post-PET CTs. The standard deviations for D{sub AP} and D{sub SI} are 5.0 and 3.0 mm, respectively, for these motion-after-Tx cases. The final seven studies, referred to as position-error cases, which had a large discordance but no misalignment, were found to have deviations of 4.6 and 3.6 mm in D{sub AP} and D{sub SI}, respectively. The position-error cases correspond to a large discrepancy on the relative location between the centroid and pelvic bones seen in post-Tx CT and recorded x-ray radiographs. Conclusions: Systematic analyses of proton-activated positron emission distributions provide patient-specific information on prostate motion ({sigma}{sub M}) and patient position variability ({Sigma}{sub p}) during daily proton beam delivery. The less than 2 mm of displacement variations in the good cases indicates that population-based values of {Sigma}{sub p} and {sigma}{sub M} used in margin algorithms for treatment planning at the authors' institution are valid for the majority of cases. However, a small fraction of PET/CT studies (approximately 14%) with {approx}4 mm displacement variations may require different margins. Such data are useful in establishing patient-specific planning target volume margins.« less
  • Purpose . Tmore » he aim of this study was to prospectively evaluate whether FDG-PET allows an accurate assessment of histopathologic response to neoadjuvant treatment in adult patients with primary bone sarcomas. Methods . Twelve consecutive patients with resectable, primary high grade bone sarcomas were enrolled prospectively. FDG-PET/CT imaging was performed prior to the initiation and after completion of neoadjuvant treatment. Imaging findings were correlated with histopathologic response. Results . Histopathologic responders showed significantly more pronounced decreases in tumor FDG-SUVmax from baseline to late follow up than non-responders ( 64 ± 19 % versus 29 ± 30 %, resp.; P = .03 ). Using a 60% decrease in tumor FDG-uptake as a threshold for metabolic response correctly classified 3 of 4 histopathologic responders and 7 of 8 histopathologic non-responders as metabolic responders and non-responders, respectively (sensitivity, 75%; specificity, 88%). Conclusion . These results suggest that changes in FDG-SUVmax at the end of neoadjuvant treatment can identify histopathologic responders and non-responders in adult primary bone sarcoma patients.« less
  • Purpose: This work demonstrates a novel application of BANG3-Pro2 polymer gel dosimeter as a dosimetric phantom able to accurately capture both dose and induced activity. Methods: BANG3-Pro2 dosimeters were irradiated with a clinical proton beam using an unmodulated beam and a spread-out Bragg peak (SOBP) modulation, the latter with a Lucite compensator to introduce a range offset in one quadrant of the circular field. The dosimeters were imaged in a nearby positron emission tomography/computed tomography (PET/CT) unit starting within 5 min of beam-off. Induced positron emission (PE) activity along the central axis of the beam was compared to analytical calculations.more » Dose distributions were read out using an optical CT scanner and were validated against ion chamber measurements and the treatment plan. The offset between the distal fall-off of dose and activity (50% level) was determined over the entire irradiated field. Lateral profiles of PE were correlated to measured dose for the unmodulated beam delivery. Results: Measured profiles of PE activity along the central beam axis were found to be within 10% of the predictions of analytical calculations. The depth-dose profiles agreed with the reference values (ion chamber or treatment plan) within 3%. The offset between the depth profiles of dose and activity for the unmodulated beam was 8.4 {+-} 1.4 mm. For the compensator-based SOBP delivery, the distribution of offsets throughout the field was found to be bimodal, with the mean of 8.9 {+-} 2.8 mm for the thinner region of the compensator and 4.3 {+-} 2.5 mm for the thicker region. For the pristine beam delivery, lateral profiles of dose and activity were found to exhibit fair spatial correlation throughout the beam range, with the mean 2D gamma index of 0.42 and 91% of the evaluated pixels passing the test. Conclusions: This work presents the first demonstration of simultaneous and accurate experimental measurement of three-dimensional distributions of dose and induced activity and lays the groundwork for further investigations using BANG3-Pro2 as a dosimetric phantom in PET/CT delivery verification studies.« less
  • Purpose: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CTmore » and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results: Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1-2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800-1,150 s. Conclusions: This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application.« less
  • Purpose: To evaluate changes in [{sup 18}F]fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) standardized uptake values (SUV) in uveal melanoma before and after plaque brachytherapy. Methods and Materials: A cohort of 217 patients diagnosed with uveal melanoma and eligible for ophthalmic plaque brachytherapy underwent preoperative PET/CT to evaluate their intraocular tumor and screen for metastasis. Subsequent to undergoing plaque brachytherapy, patients' PET/CT SUV were periodically reevaluated over 42 months. Results: In this series, 37 (17%) choroidal melanoma patients were found to have an SUV of >2.0. Of these, 18 patients were able to undergo interval follow-up PET/CT scanning. There were 3more » patients with T2, 11 patients with T3, and 4 patients with T4 melanomas according to 7th edition AJCC-UICC criteria. Mean apical thickness was 8.8 mm (range, 3-12.3 mm), and the largest mean tumor diameter was 15.1 mm (range, 12-19.9 mm). The mean initial SUV was 3.7 (range, 2.1-7.3). Patients were followed for a median 16 months (range, 6-42 months). The median time to a tumor SUV of 0 was 8.0 months (range, 6-18 months). There was one case of one interval increase in SUV that diminished after circumferential laser treatment. Conclusions: Intraocular PET/CT imaging provides a physiological assessment of tumor metabolism that can be used to evaluate changes after treatment. In this study, ophthalmic plaque radiation therapy was associated with extinguished tumor PET/CT SUV over time. PET/CT imaging can be used to assess choroidal melanomas for their response to treatment.« less