skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy

Abstract

Purpose: Four-dimensional cone-beam computed tomography (4D-CBCT) imaging is sensitive to parameters such as gantry rotation speed, number of gantry rotations, X-ray pulse rate, and tube current, as well as a patient's breathing pattern. The aim of this study is to optimize the image acquisition on a patient-specific basis while minimizing the scan time and the radiation dose. Methods and Materials: More than 60 sets of 4D-CBCT images, each with a temporal resolution of 10 phases, were acquired using multiple-gantry rotation and slow-gantry rotation techniques. The image quality was quantified with a relative root mean-square error (RE) and correlated with various acquisition settings; specifically, varying gantry rotation speed, varying both the rotation speed and the number of rotations, and varying both the rotation speed and tube current to keep the radiation exposure constant. These experiments were repeated for three different respiratory periods. Results: With similar radiation dose, 4D-CBCT images acquired with low current and low rotation speed have better quality over images obtained with high current and high rotation speed. In general, a one-rotation low-speed scan is superior to a two-rotation double-speed scan, even though they provide the same number of projections. Furthermore, it is found that the image quality behavesmore » monotonically with the relative speed as defined by the gantry rotation speed and the patient respiratory period. Conclusions: The RE curves established in this work can be used to predict the 4D-CBCT image quality before a scan. This allows the acquisition protocol to be optimized individually to balance the desired quality with the associated scanning time and patient radiation dose.« less

Authors:
 [1];  [2]
  1. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)
  2. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States). E-mail: lei@reyes.stanford.edu
Publication Date:
OSTI Identifier:
20944781
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 4; Other Information: DOI: 10.1016/j.ijrobp.2006.10.024; PII: S0360-3016(06)03338-4; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BEAMS; COMPUTERIZED TOMOGRAPHY; ERRORS; IMAGES; OPTIMIZATION; PATIENTS; RADIATION DOSES; RADIOTHERAPY; RESPIRATION; SPATIAL RESOLUTION; VELOCITY

Citation Formats

Li Tianfang, and Xing Lei. Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy. United States: N. p., 2007. Web.
Li Tianfang, & Xing Lei. Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy. United States.
Li Tianfang, and Xing Lei. Thu . "Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy". United States. doi:.
@article{osti_20944781,
title = {Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy},
author = {Li Tianfang and Xing Lei},
abstractNote = {Purpose: Four-dimensional cone-beam computed tomography (4D-CBCT) imaging is sensitive to parameters such as gantry rotation speed, number of gantry rotations, X-ray pulse rate, and tube current, as well as a patient's breathing pattern. The aim of this study is to optimize the image acquisition on a patient-specific basis while minimizing the scan time and the radiation dose. Methods and Materials: More than 60 sets of 4D-CBCT images, each with a temporal resolution of 10 phases, were acquired using multiple-gantry rotation and slow-gantry rotation techniques. The image quality was quantified with a relative root mean-square error (RE) and correlated with various acquisition settings; specifically, varying gantry rotation speed, varying both the rotation speed and the number of rotations, and varying both the rotation speed and tube current to keep the radiation exposure constant. These experiments were repeated for three different respiratory periods. Results: With similar radiation dose, 4D-CBCT images acquired with low current and low rotation speed have better quality over images obtained with high current and high rotation speed. In general, a one-rotation low-speed scan is superior to a two-rotation double-speed scan, even though they provide the same number of projections. Furthermore, it is found that the image quality behaves monotonically with the relative speed as defined by the gantry rotation speed and the patient respiratory period. Conclusions: The RE curves established in this work can be used to predict the 4D-CBCT image quality before a scan. This allows the acquisition protocol to be optimized individually to balance the desired quality with the associated scanning time and patient radiation dose.},
doi = {},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 67,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • Purpose: SymmetryTM 4D IGRT system of Elekta has been installed at our institution, which offers the 4D CBCT registration option. This study is to evaluate the accuracy of 4D CBCT system by using the CIRS 4D motion phantom and to perform a feasibility study on the implementation of 4D-CBCT as image guidance for SBRT treatment. Methods: The 3D and 4D CT image data sets are acquired using the CIRS motion phantom on a Philips large bore CT simulator. The motion was set as 0.5 cm superior and inferior directions with 6 seconds recycle time. The 4D CT data were sortedmore » as 10 phases. One identifiable part of the 4D CT QA insert from CIRS phantom was used as the target. The ITV MIP was drawn based on maximum intensity projection (MIP) and transferred as a planning structure into 4D CBCT system. Then the 3D CBCT and 4D CBCT images were taken and registered with the free breath (3D), MIP (4D) and average intensity projection (AIP)(4D) reference data sets. The couch shifts (X, Y, Z) are recorded and compared. Results: Table 1 listed the twelve couch shifts based on the registration of MIP, AIP and free breath CT data sets with 3D CBCT and 4D CBCT for both whole body and local registration. X, Y and Z represent couch shifts in the direction of the right-left, superior-inferior and anterior-posterior. The biggest differences of 0.73 cm and 0.57 cm are noted in the free breath CT data with 4D CBCT and 3D CBCT data registration. Fig. 1 and Fig. 2 are the shift analysis in diagram. Fig. 3 shows the registration. Conclusion: Significant differences exist in the shifts corresponding with the direction of target motion. Further investigations are ongoing.« less
  • Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of themore » tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory phase resulting in a dose of ∼1.7–2.6 mGy per respiratory phase. Further dose savings and decreases in the scanning time are possible by acquiring only a subset of all respiratory phases, for example, peak-exhale and peak-inhale only scans.Conclusions: This study is the first experimental demonstration of a new 4d CBCT acquisition paradigm in which imaging dose is efficiently utilized by actively triggering only those projections that are desired for the reconstruction process.« less
  • Purpose: To investigate whether the three-dimensional cone-beam CT (CBCT) is clinically equivalent to the four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) reconstructed images for internal target volume (ITV) localization in image-guided lung stereotactic radiotherapy.Methods: A ball-shaped polystyrene phantom with built-in cube, sphere, and cone of known volumes was attached to a motor-driven platform, which simulates a sinusoidal movement with changeable motion amplitude and frequency. Target motion was simulated in the patient in a superior-inferior (S-I) direction with three motion periods and 2 cm peak-to-peak amplitudes. The Varian onboard Exact-Arms kV CBCT system and the GE LightSpeed four-slice CT integratedmore » with the respiratory-position-management 4DCT scanner were used to scan the moving phantom. MIP images were generated from the 4DCT images. The clinical equivalence of the two sets of images was evaluated by comparing the extreme locations of the moving objects along the motion direction, the centroid position of the ITV, and the ITV volumes that were contoured automatically by Velocity or calculated with an imaging gradient method. The authors compared the ITV volumes determined by the above methods with those theoretically predicted by taking into account the physical object dimensions and the motion amplitudes. The extreme locations were determined by the gradient method along the S-I axis through the center of the object. The centroid positions were determined by autocenter functions. The effect of motion period on the volume sizes was also studied.Results: It was found that the extreme locations of the objects determined from the two image modalities agreed with each other satisfactorily. They were not affected by the motion period. The average difference between the two modalities in the extreme locations was 0.68% for the cube, 1.35% for the sphere, and 0.5% for the cone, respectively. The maximum difference in the centroid position of the cylinder, sphere, and cone was less than 1.4 mm between the two modalities for all motion periods studied. For the ITV volume evaluation, the authors found that both MIP-based and CBCT-based ITVs increased with increases of motion period. Furthermore, the MIP-based ITV volumes were generally larger than those determined from the CBCT images, with the difference in autocontoured volumes being 2.57%, 1.66%, and 1.82% for the sphere, cylinder, and cone, respectively, while these differences increased to 9.57%, 3.52%, 8.71% for the above objects when the gradient method was used. The authors found that the autocontour method was accurate enough to predict the actual ITV values with the absolute differences less than 2.4% comparing to the theoretically predicted values.Conclusions: The extreme location and the centroid position of the objects agree with each other between the two image modalities when the breathing motion is sinusoidal. Although the ITV volumes delineated from both image modalities changed with the motion period, the differences in ITV between the two modalities were minimal when an optimized window level was used. The authors’ results suggest that CBCT and MIP images are equivalent in determining an ITV's position in the conditions studied. The CBCT is adequate in providing imaging-guidance for lung cancer treatment.« less
  • Purpose: To estimate dosimetric errors resulting from using contours deformably mapped from planning CT to 4D cone beam CT (CBCT) images for image-guided adaptive radiotherapy of locally advanced non-small cell lung cancer (NSCLC). Methods: Ten locally advanced non-small cell lung cancer (NSCLC) patients underwent one planning 4D fan-beam CT (4DFBCT) and weekly 4DCBCT scans. Multiple physicians delineated the gross tumor volume (GTV) and normal structures in planning CT images and only GTV in CBCT images. Manual contours were mapped from planning CT to CBCTs using small deformation, inverse consistent linear elastic (SICLE) algorithm for two scans in each patient. Twomore » physicians reviewed and rated the DIR-mapped (auto) and manual GTV contours as clinically acceptable (CA), clinically acceptable after minor modification (CAMM) and unacceptable (CU). Mapped normal structures were visually inspected and corrected if necessary, and used to override tissue density for dose calculation. CTV (6mm expansion of GTV) and PTV (5mm expansion of CTV) were created. VMAT plans were generated using the DIR-mapped contours to deliver 66 Gy in 33 fractions with 95% and 100% coverage (V66) to PTV and CTV, respectively. Plan evaluation for V66 was based on manual PTV and CTV contours. Results: Mean PTV V66 was 84% (range 75% – 95%) and mean CTV V66 was 97% (range 93% – 100%) for CAMM scored plans (12 plans); and was 90% (range 80% – 95%) and 99% (range 95% – 100%) for CA scored plans (7 plans). The difference in V66 between CAMM and CA was significant for PTV (p = 0.03) and approached significance for CTV (p = 0.07). Conclusion: The quality of DIR-mapped contours directly impacted the plan quality for 4DCBCT-based adaptation. Larger safety margins may be needed when planning with auto contours for IGART with 4DCBCT images. Reseach was supported by NIH P01CA116602.« less
  • Purpose: To evaluate the influence of a dietary protocol on cone beam computed tomography (CBCT) image quality, which is an indirect indicator for short-term (intrafraction) prostate motion, and on interfraction motion. Image quality is affected by motion (e.g., moving gas) during imaging and influences the performance of automatic prostate localization on CBCT scans. Methods and Materials: Twenty-six patients (336 CBCT scans) followed the dietary protocol and 23 patients (240 CBCT scans) did not. Prostates were automatically localized by using three dimensional (3D) gray-value registration (GR). Feces and (moving) gas occurrence in the CBCT scans, the success rate of 3D-GR, andmore » the statistics of prostate motion data were assessed. Results: Feces, gas, and moving gas significantly decreased from 55%, 61%, and 43% of scans in the nondiet group to 31%, 47%, and 28% in the diet group (all p < 0.001). Since there is a known relation between gas and short-term prostate motion, intrafraction prostate motion probably also decreased. The success rate of 3D-GR improved from 83% to 94% (p < 0.001). A decrease in random interfraction prostate motion also was found, which was not significant after Bonferroni's correction. Significant deviations from planning CT position for rotations around the left-right axis were found in both groups. Conclusions: The dietary protocol significantly decreased the incidence of feces and (moving) gas. As a result, CBCT image quality and the success rate of 3D-GR significantly increased. A trend exists that random interfraction prostate motion decreases. Using a dietary protocol therefore is advisable, also without CBCT-based image guidance.« less