skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats

Abstract

Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 {+-} 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 {mu}g/mL (Group 3), or 100 {mu}g/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 {mu}g/mL or 100 {mu}g/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.

Authors:
 [1];  [2];  [3];  [3];  [4];  [5]
  1. Department of Radiation Oncology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)
  2. Research Institute of Daewoong Pharmaceutical Company, Kyungkido (Korea, Republic of)
  3. Asan Institute of Life Sciences, Seoul (Korea, Republic of)
  4. Department of Radiology, Gyeongsang National University, College of Medicine, Jinju (Korea, Republic of)
  5. Department of Plastic and Reconstructive Surgery, University of Ulsan, College of Medicine, Asan Medical Center, Seoul (Korea, Republic of). E-mail: joonphong@amc.seoul.kr
Publication Date:
OSTI Identifier:
20944777
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 4; Other Information: DOI: 10.1016/j.ijrobp.2006.10.038; PII: S0360-3016(06)03367-0; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; ANOREXIA; BIOLOGICAL RADIATION EFFECTS; GROWTH FACTORS; HAIR; HEAD; IRRADIATION; LINEAR ACCELERATORS; RADIOTHERAPY; RATS; SENSITIVITY

Citation Formats

Lee, Sang-wook, Jung, Kwon Il, Kim, Yeun Wha B.S., Jung, Heun Don, Kim, Hyun Sook, and Hong, Joon Pio. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.10.038.
Lee, Sang-wook, Jung, Kwon Il, Kim, Yeun Wha B.S., Jung, Heun Don, Kim, Hyun Sook, & Hong, Joon Pio. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats. United States. doi:10.1016/j.ijrobp.2006.10.038.
Lee, Sang-wook, Jung, Kwon Il, Kim, Yeun Wha B.S., Jung, Heun Don, Kim, Hyun Sook, and Hong, Joon Pio. Thu . "Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats". United States. doi:10.1016/j.ijrobp.2006.10.038.
@article{osti_20944777,
title = {Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats},
author = {Lee, Sang-wook and Jung, Kwon Il and Kim, Yeun Wha B.S. and Jung, Heun Don and Kim, Hyun Sook and Hong, Joon Pio},
abstractNote = {Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 {+-} 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 {mu}g/mL (Group 3), or 100 {mu}g/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 {mu}g/mL or 100 {mu}g/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.},
doi = {10.1016/j.ijrobp.2006.10.038},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 67,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • Purpose: To study the effect of recombinant human keratinocyte growth factor (rHuKGF or palifermin) on oral mucositis induced by radiochemotherapy in a mouse model. Methods and Materials: Cis-diamminedichloroplatinum (cisplatin) and/or 5-fluorouracil were given before single dose irradiation, combined with palifermin before or after the treatment, or both. Daily fractionated irradiation for 2 weeks was followed by graded test doses. With additional chemotherapy in Week 1, palifermin was given before radiotherapy and at the end of the first week, or additionally at the end of Week 2. Radiochemotherapy in Week 2 was combined with palifermin at the end of Weeks 1more » and 2, Weeks 1, 2, and 3, or additionally before radiotherapy. Ulceration of mouse tongue mucosa was analyzed as the endpoint. Results: The dose associated with ulcer induction in 50% of the mice (ED{sub 50}) for single-dose irradiation was 11.5 {+-} 0.7 Gy. Palifermin increased the ED{sub 50} to about 19 Gy in all protocols tested. Similar values were observed when chemotherapy was added before irradiation. With fractionated irradiation, palifermin increased the ED{sub 50} for test irradiation from 5.7 {+-} 1.5 Gy to 12-15 Gy, depending on the administration protocol. With chemotherapy in Week 1, two palifermin injections had no significant effect, but a third injection increased the ED{sub 50} to 13 Gy. With chemotherapy in Week 2, all palifermin protocols resulted in ED{sub 50} values of 13-14 Gy. Conclusion: A marked increase in oral mucosal radiation tolerance by palifermin was found, which was preserved in combinations with chemotherapy using cisplatin and/or 5-fluorouracil.« less
  • Purpose: To evaluate the activity of palifermin (rHuKGF) in a murine model of mucosal damage induced by a radiotherapy/chemotherapy (RT/CT) regimen mimicking treatment protocols used in head-and-neck cancer patients. Methods and Materials: A model of mucosal damage induced by RT/CT was established by injecting female BDF1 mice with cisplatin (10 mg/kg) on Day 1; 5-fluorouracil (40 mg/kg/day) on Days 1-4, and irradiation (5 Gy/day) to the head and neck on Days 1-5. Palifermin was administered subcutaneously on Days -2 to 0 (5 mg/kg/day) and on Day 5 (5 mg/kg). Evaluations included body weight, organ weight, keratinocyte growth factor receptor expression,more » epithelial thickness, and cellular proliferation. Results: Initiation of the radiochemotherapeutic regimen resulted in a reduction in body weight in control animals. Palifermin administration suppressed weight loss and resulted in increased organ weight (salivary glands and small intestine), epithelial thickness (esophagus and tongue), and cellular proliferation (tongue and salivary glands). Conclusions: Administration of palifermin before RT/CT promotes cell proliferation and increases in epithelial thickness in the oral mucosa, salivary glands, and digestive tract. Palifermin administration before and after RT/CT mitigates weight loss and a trophic effect on the intestinal mucosa and salivary glands, suggesting that palifermin use should be investigated further in the RT/CT settings, in which intestinal mucositis and salivary gland dysfunction are predominant side effects of cytotoxic therapy.« less
  • Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less
  • Epidermal growth factor (EGF) was iodinated and administered orally to 13- to 15-day-old suckling rats and 29- to 31-day-old weanling rats. After 30 min, stomach, small intestine, plasma, liver, lung, and skin were removed. The tissues were homogenized and /sup 125/I radioactivity was extracted. Compared with suckling rats, the delivery of total radioactivity into peripheral tissues was enhanced in skin of weanling rats and tended to be higher in plasma and liver. In contrast, there was a 3.3-fold reduction in radioactivity remaining in the intestinal wall. Sephadex G-25 chromatography of most samples, especially liver and intestinal wall, revealed a decreasemore » in the proportion of intact /sup 125/I-EGF eluting in the void volume. As a result, because the amount of total radioactivity also differed, the overall recovery of radioactivity of void volume /sup 125/I-EGF was similar in both age groups except for an increase in skin and a decrease in the intestinal of weanling rats. Extracts of all tissues of weanling rats examined contained immunoreactive /sup 125/I-EGF. Samples obtained from tissues and content of the gastrointestinal tract of both age groups bound specifically to A431 cell surface receptors. These results thus indicate that EGF is absorbed and delivered to various tissues of weanling rats. Nevertheless, quantitative and qualitative changes in these processes occur during the postnatal period.« less
  • Th rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4/sup 0/C. At 37/sup 0/C both ligands are ''sequestered,'' but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NFGmore » sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.« less