skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

Abstract

Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p < 0.001), and enabled dose reductions of normal tissues, including brainstem (D{sub mean} by 19.8% and D{sub max} by 10.7%), optic chiasm (D{sub mean} by 25.3% and D{sub max} by 22.6%), right optic nerve (D{sub mean} by 37.3% and D{sub max} by 28.5%), and left optic nerve (D{sub mean} by 40.6% and D{sub max} by 36.7%), p {<=} 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose wasmore » reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation.« less

Authors:
 [1];  [2];  [2];  [1];  [1];  [3]
  1. Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)
  2. Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)
  3. Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States). E-mail: SYWoo@mdanderson.org
Publication Date:
OSTI Identifier:
20944773
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 4; Other Information: DOI: 10.1016/j.ijrobp.2006.10.032; PII: S0360-3016(06)03341-4; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BRAIN; EVALUATION; GLIOMAS; HEALTH HAZARDS; INTEGRAL DOSES; PATIENTS; PLANNING; RADIOTHERAPY

Citation Formats

Hermanto, Ulrich, Frija, Erik K., Lii, MingFwu J., Chang, Eric L., Mahajan, Anita, and Woo, Shiao Y. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.10.032.
Hermanto, Ulrich, Frija, Erik K., Lii, MingFwu J., Chang, Eric L., Mahajan, Anita, & Woo, Shiao Y. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?. United States. doi:10.1016/j.ijrobp.2006.10.032.
Hermanto, Ulrich, Frija, Erik K., Lii, MingFwu J., Chang, Eric L., Mahajan, Anita, and Woo, Shiao Y. Thu . "Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?". United States. doi:10.1016/j.ijrobp.2006.10.032.
@article{osti_20944773,
title = {Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?},
author = {Hermanto, Ulrich and Frija, Erik K. and Lii, MingFwu J. and Chang, Eric L. and Mahajan, Anita and Woo, Shiao Y.},
abstractNote = {Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p < 0.001), and enabled dose reductions of normal tissues, including brainstem (D{sub mean} by 19.8% and D{sub max} by 10.7%), optic chiasm (D{sub mean} by 25.3% and D{sub max} by 22.6%), right optic nerve (D{sub mean} by 37.3% and D{sub max} by 28.5%), and left optic nerve (D{sub mean} by 40.6% and D{sub max} by 36.7%), p {<=} 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation.},
doi = {10.1016/j.ijrobp.2006.10.032},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 67,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less
  • Purpose: To evaluate the role of beam orientation optimization and the role of virtual volumes (VVs) aimed at protecting adjacent organs at risk (OARs), and to compare various intensity-modulated radiotherapy (IMRT) setups with conventional treatment with anterior and posterior fields and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Patients with mediastinal masses in Hodgkin's disease were treated with combined modality therapy (three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine [ABVD] before radiation treatment). Contouring and treatment planning were performed with Somavision and CadPlan Helios (Varian Systems, Palo Alto, CA). The gross tumor volume was determined according to themore » prechemotherapy length and the postchemotherapy width of the mediastinal tumor mass. A 10-mm isotropic margin was added for the planning target volume (PTV). Because dose constraints assigned to OARs led to unsatisfactory PTV coverage, VVs were designed for each patient to protect adjacent OARs. The prescribed dose was 40 Gy to the PTV, delivered according to guidelines from International Commission on Radiation Units and Measurements Report No. 50. Five different IMRT treatment plans were compared with conventional treatment and 3D-CRT. Results: Beam orientation was important with respect to the amount of irradiated normal tissues. The best compromise in terms of PTV coverage and protection of normal tissues was obtained with five equally spaced beams (5FEQ IMRT plan) using dose constraints assigned to VVs. When IMRT treatment plans were compared with conventional treatment and 3D-CRT, dose conformation with IMRT was significantly better, with greater protection of the heart, coronary arteries, esophagus, and spinal cord. The lungs and breasts in women received a slightly higher radiation dose with IMRT compared with conventional treatments. The greater volume of normal tissue receiving low radiation doses could be a cause for concern. Conclusions: The 5FEQ IMRT plan with dose constraints assigned to the PTV and VV allows better dose conformation than conventional treatment and 3D-CRT, notably with better protection of the heart and coronary arteries. Of concern is the 'spreading out' of low doses to the rest of the patient's body.« less
  • Purpose: Volumetric modulated arc therapy (VMAT), the predecessor to Varian's RapidArc, is a novel extension of intensity-modulated radiotherapy (IMRT) wherein the dose is delivered in a single gantry rotation while the multileaf collimator leaves are in motion. Leaf positions and the weights of field samples along the arc are directly optimized, and a variable dose rate is used. This planning study compared seven-field coplanar IMRT (cIMRT) with VMAT for high-grade gliomas that had planning target volumes (PTVs) overlapping organs at risk (OARs). Methods and Materials: 10 previously treated patients were replanned to 60 Gy in 30 fractions with cIMRT andmore » VMAT using the following planning objectives: 98% of PTV covered by 95% isodose without violating OAR and hotspot dose constraints. Mean OAR doses were maximally decreased without reducing PTV coverage or violating hotspot constraints. We compared dose-volume histogram data, monitor units, and treatment times. Results: There was equivalent PTV coverage, homogeneity, and conformality. VMAT significantly reduced maximum and mean retinal, lens, and contralateral optic nerve doses compared with IMRT (p < 0.05). Brainstem, chiasm, and ipsilateral optic nerve doses were similar. For 2-Gy fractions, mean monitor units were as follows: cIMRT = 789 +- 112 and VMAT = 363 +- 45 (relative reduction 54%, p = 0.002), and mean treatment times (min) were as follows: cIMRT = 5.1 +- 0.4 and VMAT = 1.8 +- 0.1 (relative reduction 65%, p = 0.002). Conclusions: Compared with cIMRT, VMAT achieved equal or better PTV coverage and OAR sparing while using fewer monitor units and less time to treat high-grade gliomas.« less
  • Purpose: To compare dosimetric endpoints between three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) at our center with limited IMRT experience, and to perform an external audit of the IMRT plans. Methods and Materials: Ten patients, who received adjuvant chemoradiation for gastric cancer, formed the study cohort. For standardization, the planning target volume (PTV) and organs at risk were recontoured with the assistance of a study protocol radiologic atlas. The cohort was replanned with CMS Xio to generate coplanar 3D-CRT and IMRT plans. All 10 datasets, including volumes but without the plans (i.e., blinded), were transmitted to an experienced centermore » where IMRT plans were designed using Nomos Corvus (IMRT-C) and ADAC Pinnacle (IMRT-P). All IMRT plans were normalized to D95% receiving 45 Gy. Results: Intensity-modulated radiotherapy yielded higher PTV V45 (volume that receives {>=}45 Gy) (p < 0.001) than 3D-CRT. No difference in V20 was seen in the right (p = 0.9) and left (p 0.3) kidneys, but the liver mean dose (p < 0.001) was superior with IMRT. For the external audit, IMRT-C (p = 0.002) and IMRT-P (p < 0.001) achieved significantly lower left kidney V20 than IMRT, and IMRT-P (p < 0.001) achieved lower right kidney V20 than IMRT. The IMRT-C (p = 0.003) but not IMRT-P (p = 0.6) had lower liver mean doses than IMRT. Conclusions: At our institution with early IMRT experience, IMRT improved PTV dose coverage and liver doses but not kidney doses. An external audit of IMRT plans showed that an experienced center can yield superior IMRT plans.« less
  • To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less