skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis

Abstract

Purpose: Toward improved glioblastoma multiforme treatment, we determined whether celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, could enhance glioblastoma radiosensitivity by inducing tumor necrosis and inhibiting tumor angiogenesis. Methods and Materials: U-87MG cells treated with celecoxib, irradiation, or both were assayed for clonogenic survival and angiogenic factor protein analysis (angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor [VEGF]). In vivo, survival of mice intracranially implanted with U-87MG cells and treated with celecoxib and/or irradiation was monitored. Isolated tumors were assessed for tumor necrosis and tumor microvascular density by von Williebrand's factor (vWF) immunohistochemical staining. Results: Celecoxib (4 and 30 {mu}M; 24, 48, and 72 h) enhanced U-87MG cell radiosensitivity by significantly reducing clonogenic survival of irradiated cells. Angiopoietin-1 and VEGF proteins were decreased, whereas angiopoietin-2 expression increased after 72 h of celecoxib alone and when combined with irradiation. In vivo, median survival of control mice intracranially implanted with U-87MG cells was 18 days. Celecoxib (100 mg/kg/day, 2 weeks) significantly extended median survival of irradiated mice (24 Gy total) from 34 to 41 days, with extensive tumor necrosis [24.5 {+-} 8.6% of tumor region, compared with irradiation alone (2.7 {+-} 1.8%)]. Tumor microvascular density was significantly reduced in combined celecoxib and irradiated tumorsmore » (52.5 {+-} 2.9 microvessels per mm{sup 2} tumor region), compared with irradiated tumors alone (65.4 {+-} 4.0 microvessels per mm{sup 2}). Conclusion: Celecoxib significantly enhanced glioblastoma radiosensitivity, reduced clonogenic survival, and prolonged survival of glioblastoma-implanted mice by inhibition of tumor angiogenesis with extensive tumor necr0010os.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [2];  [5]
  1. Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre (Singapore). E-mail: dmskkb@nccs.com.sg
  2. Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre (Singapore)
  3. Department of Pathology, Singapore General Hospital (Singapore)
  4. Baker Heart Research Institute, Melbourne (Australia)
  5. Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre (Singapore) and National Neuroscience Institute, Singapore General Hospital Campus (Singapore)
Publication Date:
OSTI Identifier:
20944743
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 3; Other Information: DOI: 10.1016/j.ijrobp.2006.09.055; PII: S0360-3016(06)03364-5; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; GLIOMAS; GROWTH FACTORS; IN VIVO; INHIBITION; IRRADIATION; MICE; NECROSIS; RADIOSENSITIVITY

Citation Formats

Kang, Khong Bee, Wang, Ting Ting, Woon, Chow Thai, Cheah, Elizabeth S., Moore, Xiao Lei, Zhu Congju, and Wong, Meng Cheong. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.09.055.
Kang, Khong Bee, Wang, Ting Ting, Woon, Chow Thai, Cheah, Elizabeth S., Moore, Xiao Lei, Zhu Congju, & Wong, Meng Cheong. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis. United States. doi:10.1016/j.ijrobp.2006.09.055.
Kang, Khong Bee, Wang, Ting Ting, Woon, Chow Thai, Cheah, Elizabeth S., Moore, Xiao Lei, Zhu Congju, and Wong, Meng Cheong. Thu . "Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis". United States. doi:10.1016/j.ijrobp.2006.09.055.
@article{osti_20944743,
title = {Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis},
author = {Kang, Khong Bee and Wang, Ting Ting and Woon, Chow Thai and Cheah, Elizabeth S. and Moore, Xiao Lei and Zhu Congju and Wong, Meng Cheong},
abstractNote = {Purpose: Toward improved glioblastoma multiforme treatment, we determined whether celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, could enhance glioblastoma radiosensitivity by inducing tumor necrosis and inhibiting tumor angiogenesis. Methods and Materials: U-87MG cells treated with celecoxib, irradiation, or both were assayed for clonogenic survival and angiogenic factor protein analysis (angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor [VEGF]). In vivo, survival of mice intracranially implanted with U-87MG cells and treated with celecoxib and/or irradiation was monitored. Isolated tumors were assessed for tumor necrosis and tumor microvascular density by von Williebrand's factor (vWF) immunohistochemical staining. Results: Celecoxib (4 and 30 {mu}M; 24, 48, and 72 h) enhanced U-87MG cell radiosensitivity by significantly reducing clonogenic survival of irradiated cells. Angiopoietin-1 and VEGF proteins were decreased, whereas angiopoietin-2 expression increased after 72 h of celecoxib alone and when combined with irradiation. In vivo, median survival of control mice intracranially implanted with U-87MG cells was 18 days. Celecoxib (100 mg/kg/day, 2 weeks) significantly extended median survival of irradiated mice (24 Gy total) from 34 to 41 days, with extensive tumor necrosis [24.5 {+-} 8.6% of tumor region, compared with irradiation alone (2.7 {+-} 1.8%)]. Tumor microvascular density was significantly reduced in combined celecoxib and irradiated tumors (52.5 {+-} 2.9 microvessels per mm{sup 2} tumor region), compared with irradiated tumors alone (65.4 {+-} 4.0 microvessels per mm{sup 2}). Conclusion: Celecoxib significantly enhanced glioblastoma radiosensitivity, reduced clonogenic survival, and prolonged survival of glioblastoma-implanted mice by inhibition of tumor angiogenesis with extensive tumor necr0010os.},
doi = {10.1016/j.ijrobp.2006.09.055},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 3,
volume = 67,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}
  • Purpose: Previously, we reported that inhibitors of cyclooxygenase-2 (COX-2) enzyme enhanced murine and human tumor cell response to radiation in vitro and in vivo. However, the molecular mechanisms mediating the effects of COX-2 inhibitors are not clear. The present study was designed to investigate the ability of celecoxib, a selective COX-2 inhibitor, to sensitize human head-and-neck cancer cell line, HN5, to radiation, and examine its effects on DNA repair, which may be a potential mechanism of radiosensitization. Methods and Materials: Cells were assessed for the effect of celecoxib (5-50 {mu}M), by 3-[4,5-dimethylthiozol-2-yl]-2,5-diphenyltetrazolium bromide assay for growth inhibition and by clonogenicmore » cell survival assay for the radiosensitizing effect. Kinase assay and Western analysis were conducted to assess the effect of celecoxib on DNA-dependent protein kinase catalytic subunit (PKcs) and Ku proteins. Electrophoretic mobility shift assays (EMSA) were performed to determine the DNA-binding activity of Ku/DNA-PKcs protein complex and nuclear factor kappa B (NF{kappa}B). Results: Celecoxib (10 and 50 {mu}M, for 2 days) inhibited the HN5 cell growth and significantly enhanced the cell radiosensitivity in a dose-dependent manner. It also reduced the shoulder region on the radiation-survival curve, suggesting that inhibition of DNA repair processes may have occurred. Western blot analysis demonstrated that celecoxib downregulated the expression of Ku70 protein and inhibited the kinase activity of DNA-PKcs, which are involved in the double-stranded DNA-break repair machinery. By EMSA, it was further shown that celecoxib reduced DNA-binding activity of Ku/DNA-PKcs protein complex. In addition, celecoxib inhibited the constitutively active NF{kappa}B and the radiation-induced NF{kappa}B in HN5 cells, suggesting that NF{kappa}B may play a role in mediating the effects of celecoxib. Conclusions: Celecoxib strongly enhanced the sensitivity of HN5 carcinoma cells to radiation, which, mechanistically, can be attributed to the inhibition of DNA repair processes in radiation-damaged cells.« less
  • Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less
  • Purpose: To evaluate the toxicity and effectiveness of celecoxib in combination with definitive chemoradiotherapy (CRT) in women with locally advanced cervical cancer. Methods and Materials: Thirty-one patients were accrued to a phase I-II trial of celecoxib 400 mg by mouth twice per day for 2 weeks before and during CRT. Tumor oxygenation (HP{sub 5}) and interstitial fluid pressure (IFP) were measured before and 2 weeks after celecoxib administration alone. The median follow-up time was 2.7 years (range, 1.1-4.4 years). Results: The most common acute G3/4 toxicities were hematologic (4/31, 12.9%) and gastrointestinal (5/31, 16.1%) largely attributed to chemotherapy. Late G3/4more » toxicity was seen in 4 of 31 patients (13.7% actuarial risk at 2 yr), including fistulas in 3 patients (9.7%). Within the first year of follow-up, 25 of 31 patients (81%) achieved complete response (CR), of whom 20 remained in CR at last follow-up. After 2 weeks of celecoxib administration before CRT, the median IFP decreased slightly (median absolute, -4.6 mm Hg; p = 0.09; relative, -21%; p = 0.07), whereas HP{sub 5} did not change significantly (absolute increase, 3.6%; p = 0.51; median relative increase, 11%; p = 0.27). No significant associations were seen between changes in HP{sub 5} or IFP and response to treatment (p = 0.2, relative HP{sub 5} change and p = 0.14, relative IFP change). Conclusions: Celecoxib in combination with definitive CRT is associated with acceptable acute toxicity, but higher than expected late complications. Celecoxib is associated with a modest reduction in the angiogenic biomarker IFP, but this does not correspond with tumor response.« less
  • We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulatedmore » VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.« less
  • Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET{sub B} receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β{sub 1}, TGF-β{sub 1}). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). Wemore » also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET{sub B} receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET{sub B} receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ET{sub B} receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET{sub B} receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. - Highlights: • Celecoxib abolishes nephrotoxic manifestations of CSA in rats. • Blockade of ETB receptors by BQ788 mimicked the nephrotoxic effects of CSA. • CSA or BQ788 reduces renal protein expression of COX-2 and endothelin ETB receptors. • Enhanced TGFβ1/IL-2/COX2/ETB signaling mediates celecoxib renoprotection.« less