skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration

Abstract

Background: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). Methods and Materials: Thoracic 4DCT scans were acquired on a 16-slice CT scanner in 29 patients. The outer esophageal wall was contoured in two extreme phases of respiration in 9 patients with nonesophageal malignancies. The displacement of the center of contour was measured at 2-cm intervals. In 20 additional patients with Stage I lung cancer, the esophagus was contoured in all 10 phases of each 4DCT at five defined anatomic levels. Both approaches were then applied to 4DCT scans of 4 patients who each had two repeat scans performed. A linear mixed effects model was constructed with fixed effects: measurement direction, measurement type, and measurement location along the cranio-caudal axis. Results: Measurement location and direction were significant descriptive parameters (Wald F-tests, p < 0.001), and the interaction term between the two was significant (p = 0.02). Medio-lateral mobility exceeded dorso-ventral mobility in the lower half of the esophagus but was of a similar magnitude in the upper half. Margins that would have incorporated allmore » movement in medio-lateral and dorso-ventral directions were 5 mm proximally, 7 mm and 6 mm respectively in the mid-esophagus, and 9 mm and 8 mm respectively in the distal esophagus. Conclusions: The distal esophagus shows more mobility. Margins for mobility that can encompass all movement were derived for use in treatment planning, particularly for stereotactic radiotherapy.« less

Authors:
 [1];  [2];  [3];  [1];  [1];  [1]
  1. Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)
  2. Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands). E-mail: s.senan@vumc.nl
  3. Department of Bioinformatics, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)
Publication Date:
OSTI Identifier:
20944728
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 3; Other Information: DOI: 10.1016/j.ijrobp.2006.09.054; PII: S0360-3016(06)03365-7; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CARCINOMAS; COMPUTERIZED TOMOGRAPHY; ESOPHAGUS; IRRADIATION; LUNGS; MOBILITY; PATIENTS; PLANNING; RADIOTHERAPY; RESPIRATION; TOXICITY

Citation Formats

Dieleman, Edith, Senan, Suresh, Vincent, Andrew, Lagerwaard, Frank J., Slotman, Ben J., and Soernsen de Koste, John R. van. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.09.054.
Dieleman, Edith, Senan, Suresh, Vincent, Andrew, Lagerwaard, Frank J., Slotman, Ben J., & Soernsen de Koste, John R. van. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. United States. doi:10.1016/j.ijrobp.2006.09.054.
Dieleman, Edith, Senan, Suresh, Vincent, Andrew, Lagerwaard, Frank J., Slotman, Ben J., and Soernsen de Koste, John R. van. Thu . "Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration". United States. doi:10.1016/j.ijrobp.2006.09.054.
@article{osti_20944728,
title = {Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration},
author = {Dieleman, Edith and Senan, Suresh and Vincent, Andrew and Lagerwaard, Frank J. and Slotman, Ben J. and Soernsen de Koste, John R. van},
abstractNote = {Background: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). Methods and Materials: Thoracic 4DCT scans were acquired on a 16-slice CT scanner in 29 patients. The outer esophageal wall was contoured in two extreme phases of respiration in 9 patients with nonesophageal malignancies. The displacement of the center of contour was measured at 2-cm intervals. In 20 additional patients with Stage I lung cancer, the esophagus was contoured in all 10 phases of each 4DCT at five defined anatomic levels. Both approaches were then applied to 4DCT scans of 4 patients who each had two repeat scans performed. A linear mixed effects model was constructed with fixed effects: measurement direction, measurement type, and measurement location along the cranio-caudal axis. Results: Measurement location and direction were significant descriptive parameters (Wald F-tests, p < 0.001), and the interaction term between the two was significant (p = 0.02). Medio-lateral mobility exceeded dorso-ventral mobility in the lower half of the esophagus but was of a similar magnitude in the upper half. Margins that would have incorporated all movement in medio-lateral and dorso-ventral directions were 5 mm proximally, 7 mm and 6 mm respectively in the mid-esophagus, and 9 mm and 8 mm respectively in the distal esophagus. Conclusions: The distal esophagus shows more mobility. Margins for mobility that can encompass all movement were derived for use in treatment planning, particularly for stereotactic radiotherapy.},
doi = {10.1016/j.ijrobp.2006.09.054},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 3,
volume = 67,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}
  • Purpose: To investigate the three-dimensional movement of internal fiducial markers placed near esophageal cancers using 320-multislice CT. Methods and Materials: This study examined 22 metal markers in the esophageal wall near the primary tumors of 12 patients treated with external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. Results: Motion in the cranial-caudal (CC) direction showed a strong correlation (R{sup 2} > 0.4) with the respiratory curve in most markers (73%). The average absolute amplitude of the marker movement was 1.5 {+-} 1.6 mm, 1.6 {+-} 1.7 mm,more » and 3.3 {+-} 3.3 mm in the left-right (LR), anterior-posterior (AP), and CC directions, respectively. The average marker displacements in the CC direction between peak exhalation and inhalation for the 22 clips were 1.1 mm (maximum, 5.5 mm), 3.0 mm (14.5 mm), and 5.1 mm (16.3 mm) for the upper, middle, and lower thoracic esophagus, respectively. Conclusions: Motion in primary esophagus tumor was evaluated with 320-multislice CT. According to this study, 4.3 mm CC, 1.5 mm AP, and 2.0 mm LR in the upper, 7.4 mm CC, 3.0 mm AP, and 2.4 mm LR in the middle, and 13.8 mm CC, 6.6 mm AP, and 6.8 mm LR in the lower thoracic esophagus provided coverage of tumor motion in 95% of the cases in our study population.« less
  • Purpose: To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. Methods and Materials: The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Results: Compared with IMRT, median lung volumes exposed to 5, 10, and 20more » Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Conclusions: Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.« less
  • Purpose: To study the impact of selecting different data sets from four-dimensional computed tomography (4D CT) imaging during proton treatment planning in patients with distal esophageal cancer. Methods and Materials: We examined the effects of changes in 4D CT data set and smearing margins in proton treatment planning for 5 patients with distal esophageal cancer whose diaphragms were in the beam path and could move several centimeters during respiration. Planning strategies based on (1) average, (2) inspiration, and (3) expiration CT were evaluated in terms of their coverage on the internal clinic target volume (ICTV) at the prescribed dose. Results:more » For Strategy 1, increasing the smearing margin caused an increase in the ICTV prescription dose coverage (PDC) at the end-exhalation phase for all patients, whereas the ICTV PDC decreased for some patients at the end-inhalation phase. For Strategy 2, a smearing margin in the range of 1.0 to 3.5 cm caused the ICTV PDC to remain essentially unchanged, regardless of which phase of 4D CT was used for dose calculation, for all patients. For Strategy 3, the ICTV coverage was adequate for 2 of the 5 patients when a smearing margin of less than 1.0 cm was used, but was not adequate for the other 3 patients regardless of the smearing margin. Conclusion: Using the inspiration CT plus a smearing margin can lead to adequate ICTV coverage in treatment plans for patients with distal esophageal tumors surrounded by tissue that is subject to large changes in density during a proton treatment.« less
  • Purpose: To evaluate the respiratory motion of primary esophageal cancers and pathologic celiac-region lymph nodes using time-resolved four-dimensional computed tomography (4D CT). Methods and Materials: Respiration-synchronized 4D CT scans were obtained to quantify the motion of primary tumors located in the proximal, mid-, or distal thoracic esophagus, as well as any involved celiac-region lymph nodes. Respiratory motion was measured in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions and was analyzed for correlation with anatomic location. Recommended margin expansions were determined for both primary and nodal targets. Results: Thirty patients underwent 4D CT scans at Massachusetts General Hospital formore » planned curative treatment of esophageal cancer. Measurements of respiratory tumor motion were obtained for 1 proximal, 4 mid-, and 25 distal esophageal tumors, as well as 12 involved celiac-region lymph nodes. The mean (SD) peak-to-peak displacements of all primary tumors in the SI, AP, and LR dimensions were 0.80 (0.45) cm, 0.28 (0.20) cm, and 0.22 (0.23) cm, respectively. Distal tumors were found to have significantly greater SI and AP motion than proximal or mid-esophageal tumors. The mean (SD) SI, AP, and LR peak-to-peak displacements of the celiac-region lymph nodes were 0.92 (0.56) cm, 0.46 (0.27) cm, and 0.19 (0.26) cm, respectively. Conclusions: Margins of 1.5 cm SI, 0.75 cm AP, and 0.75 cm LR would account for respiratory tumor motion of >95% of esophageal primary tumors in the dataset. All celiac-region lymph nodes would be adequately covered with SI, AP, and LR margins of 2.25 cm, 1.0 cm, and 0.75 cm, respectively.« less
  • Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion withmore » various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung.« less