skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury

Abstract

Purpose: To determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin, AEOL 10150, with superoxide dismutase (SOD) mimetic properties, reduces the severity of radiation-induced injury to the lung from single-dose irradiation (RT) of 28 Gy. Methods and Materials: Rats were randomly divided into four different dose groups (0, 1, 10, and 30 mg/kg/day of AEOL 10150), receiving either short-term (1 week) or long-term (10 weeks) drug administration via osmotic pumps. Rats received single-dose irradiation (RT) of 28 Gy to the right hemithorax. Breathing rates, body weights, blood samples, histopathology, and immunohistochemistry were used to assess lung damage. Results: There was no significant difference in any of the study endpoints between the irradiated controls and the three groups receiving RT and short-term administration of AEOL 10150. For the long-term administration, functional determinants of lung damage 20 weeks postradiation were significantly worse for RT + phosphate-buffered saline (PBS) and RT + 1 mg/kg/day of AEOL 10150 as compared with the irradiated groups treated with higher doses of AEOL 10150 (10 or 30 mg/kg/day). Lung histology at 20 weeks revealed a significant decrease in structural damage and collagen deposition in rats receiving 10 or 30 mg/kg/day after radiation in comparison to themore » RT + PBS and 1 mg/kg/day groups. Immunohistochemistry demonstrated a significant reduction in macrophage accumulation, oxidative stress, and hypoxia in rats receiving AEOL 10150 (10 or 30 mg/kg/day) after lung irradiation compared with the RT + PBS and 1 mg/kg/day groups. Conclusions: The chronic administration of a novel catalytic antioxidant, AEOL 10150, demonstrates a significant protective effect from radiation-induced lung injury. AEOL 10150 has its primary impact on the cascade of events after irradiation, and adding the drug before irradiation and its short-term administration have no significant additional benefits.« less

Authors:
 [1];  [1];  [1];  [2];  [2];  [3];  [1];  [4]
  1. Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)
  2. Department of Medicine, National Jewish Medical and Research Center, Denver, CO (United States)
  3. Aeolus Pharmaceuticals, Laguna Niguel, CA (United States)
  4. Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States). E-mail: vujas@radonc.duke.edu
Publication Date:
OSTI Identifier:
20944704
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 2; Other Information: DOI: 10.1016/j.ijrobp.2006.09.053; PII: S0360-3016(06)03233-0; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ANOXIA; ANTIOXIDANTS; BIOLOGICAL STRESS; BLOOD; CHRONIC INTAKE; COLLAGEN; DAMAGE; DRUGS; HISTOLOGY; INJURIES; IRRADIATION; LUNGS; MACROPHAGES; OXIDATION; PORPHYRINS; RADIATION DOSES; RATS; RESPIRATION; SUPEROXIDE DISMUTASE; TOXICITY

Citation Formats

Rabbani, Zahid N., Batinic-Haberle, Ines, Anscher, Mitchell S., Huang Jie, Day, Brian J., Alexander, Elaine, Dewhirst, Mark W., and Vujaskovic, Zeljko. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.09.053.
Rabbani, Zahid N., Batinic-Haberle, Ines, Anscher, Mitchell S., Huang Jie, Day, Brian J., Alexander, Elaine, Dewhirst, Mark W., & Vujaskovic, Zeljko. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. United States. doi:10.1016/j.ijrobp.2006.09.053.
Rabbani, Zahid N., Batinic-Haberle, Ines, Anscher, Mitchell S., Huang Jie, Day, Brian J., Alexander, Elaine, Dewhirst, Mark W., and Vujaskovic, Zeljko. Thu . "Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury". United States. doi:10.1016/j.ijrobp.2006.09.053.
@article{osti_20944704,
title = {Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury},
author = {Rabbani, Zahid N. and Batinic-Haberle, Ines and Anscher, Mitchell S. and Huang Jie and Day, Brian J. and Alexander, Elaine and Dewhirst, Mark W. and Vujaskovic, Zeljko},
abstractNote = {Purpose: To determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin, AEOL 10150, with superoxide dismutase (SOD) mimetic properties, reduces the severity of radiation-induced injury to the lung from single-dose irradiation (RT) of 28 Gy. Methods and Materials: Rats were randomly divided into four different dose groups (0, 1, 10, and 30 mg/kg/day of AEOL 10150), receiving either short-term (1 week) or long-term (10 weeks) drug administration via osmotic pumps. Rats received single-dose irradiation (RT) of 28 Gy to the right hemithorax. Breathing rates, body weights, blood samples, histopathology, and immunohistochemistry were used to assess lung damage. Results: There was no significant difference in any of the study endpoints between the irradiated controls and the three groups receiving RT and short-term administration of AEOL 10150. For the long-term administration, functional determinants of lung damage 20 weeks postradiation were significantly worse for RT + phosphate-buffered saline (PBS) and RT + 1 mg/kg/day of AEOL 10150 as compared with the irradiated groups treated with higher doses of AEOL 10150 (10 or 30 mg/kg/day). Lung histology at 20 weeks revealed a significant decrease in structural damage and collagen deposition in rats receiving 10 or 30 mg/kg/day after radiation in comparison to the RT + PBS and 1 mg/kg/day groups. Immunohistochemistry demonstrated a significant reduction in macrophage accumulation, oxidative stress, and hypoxia in rats receiving AEOL 10150 (10 or 30 mg/kg/day) after lung irradiation compared with the RT + PBS and 1 mg/kg/day groups. Conclusions: The chronic administration of a novel catalytic antioxidant, AEOL 10150, demonstrates a significant protective effect from radiation-induced lung injury. AEOL 10150 has its primary impact on the cascade of events after irradiation, and adding the drug before irradiation and its short-term administration have no significant additional benefits.},
doi = {10.1016/j.ijrobp.2006.09.053},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 2,
volume = 67,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2007},
month = {Thu Feb 01 00:00:00 EST 2007}
}
  • Purpose: To determine whether an anti-transforming growth factor-{beta} (TGF-{beta}) type 1 receptor inhibitor (SM16) can prevent radiation-induced lung injury. Methods and Materials: One fraction of 28 Gy or sham radiotherapy (RT) was administered to the right hemithorax of Sprague-Dawley rats. SM16 was administered in the rat chow (0.07 g/kg or 0.15 g/kg) beginning 7 days before RT. The rats were divided into eight groups: group 1, control chow; group 2, SM16, 0.07 g/kg; group 3, SM16, 0.15 g/kg; group 4, RT plus control chow; group 5, RT plus SM16, 0.07 g/kg; group 6, RT plus SM16, 0.15 g/kg; group 7,more » RT plus 3 weeks of SM16 0.07 g/kg followed by control chow; and group 8, RT plus 3 weeks of SM16 0.15 g/kg followed by control chow. The breathing frequencies, presence of inflammation/fibrosis, activation of macrophages, and expression/activation of TGF-{beta} were assessed. Results: The breathing frequencies in the RT plus SM16 0.15 g/kg were significantly lower than the RT plus control chow from Weeks 10-22 (p <0.05). The breathing frequencies in the RT plus SM16 0.07 g/kg group were significantly lower only at Weeks 10, 14, and 20. At 26 weeks after RT, the RT plus SM16 0.15 g/kg group experienced a significant decrease in lung fibrosis (p = 0.016), inflammatory response (p = 0.006), and TGF-{beta}1 activity (p = 0.011). No significant reduction was found in these measures of lung injury in the group that received SM16 0.7g/kg nor for the short-course (3 weeks) SM16 at either dose level. Conclusion: SM16 at a dose of 0.15 g/kg reduced functional lung damage, morphologic changes, inflammatory response, and activation of TGF-{beta} at 26 weeks after RT. The data suggest a dose response and also suggest the superiority of long-term vs. short-term dosing.« less
  • Systemically administered misoprostol, a PGE analog, has been shown to be an intestinal radioprotector. The purpose of this study was to determine if administration of misoprostol into the intestinal lumen can also reduce the severity of acute radiation enteritis. The rat small bowel was operatively exteriorized and segmented by means of suture ties. The remainder of the intestine and the rat were shielded in a lead box. Misoprostol was introduced into the lumen in various doses. After 30 min exposure to misoprostol, the isolated, exteriorized, segmented bowel was subjected to 11 Gy X irradiation. Five days later the animals weremore » sacrificed and the intestines harvested for evaluation. Surviving crypt numbers per circumference and mucosal height were the criteria used for quantification of damage. Mucosa exposed to misoprostol at the time of radiation delivery showed significantly increased crypt numbers and mucosal height compared to adjacent saline-filled intestine. 24 refs., 2 figs., 2 tabs.« less
  • A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes
  • Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed amore » more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.« less