skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catching supermassive black hole binaries without a net

Abstract

The gravitational wave signals from coalescing Supermassive Black Hole Binaries are prime targets for the Laser Interferometer Space Antenna (LISA). With optimal data processing techniques, the LISA observatory should be able to detect black hole mergers anywhere in the Universe. The challenge is to find ways to dig the signals out of a combination of instrument noise and the large foreground from stellar mass binaries in our own galaxy. The standard procedure of matched filtering against a grid of templates can be computationally prohibitive, especially when the black holes are spinning or the mass ratio is large. Here we develop an alternative approach based on Metropolis-Hastings sampling and simulated annealing that is orders of magnitude cheaper than a grid search. For the first time, we show that it is possible to detect and characterize the signals from binary systems of Schwarzschild Black Holes that are embedded in instrument noise and a foreground containing millions of galactic binaries. Our technique is computationally efficient, robust, and applicable to both high and low signal-to-noise ratio systems.

Authors:
;  [1]
  1. Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)
Publication Date:
OSTI Identifier:
20935193
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. D, Particles Fields; Journal Volume: 75; Journal Issue: 2; Other Information: DOI: 10.1103/PhysRevD.75.021301; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ANNEALING; ANTENNAS; BLACK HOLES; DATA PROCESSING; GALAXIES; GRAVITATIONAL WAVES; INTERFEROMETERS; MASS; NOISE; SIGNAL-TO-NOISE RATIO; SIGNALS; UNIVERSE

Citation Formats

Cornish, Neil J., and Porter, Edward K.. Catching supermassive black hole binaries without a net. United States: N. p., 2007. Web. doi:10.1103/PHYSREVD.75.021301.
Cornish, Neil J., & Porter, Edward K.. Catching supermassive black hole binaries without a net. United States. doi:10.1103/PHYSREVD.75.021301.
Cornish, Neil J., and Porter, Edward K.. Mon . "Catching supermassive black hole binaries without a net". United States. doi:10.1103/PHYSREVD.75.021301.
@article{osti_20935193,
title = {Catching supermassive black hole binaries without a net},
author = {Cornish, Neil J. and Porter, Edward K.},
abstractNote = {The gravitational wave signals from coalescing Supermassive Black Hole Binaries are prime targets for the Laser Interferometer Space Antenna (LISA). With optimal data processing techniques, the LISA observatory should be able to detect black hole mergers anywhere in the Universe. The challenge is to find ways to dig the signals out of a combination of instrument noise and the large foreground from stellar mass binaries in our own galaxy. The standard procedure of matched filtering against a grid of templates can be computationally prohibitive, especially when the black holes are spinning or the mass ratio is large. Here we develop an alternative approach based on Metropolis-Hastings sampling and simulated annealing that is orders of magnitude cheaper than a grid search. For the first time, we show that it is possible to detect and characterize the signals from binary systems of Schwarzschild Black Holes that are embedded in instrument noise and a foreground containing millions of galactic binaries. Our technique is computationally efficient, robust, and applicable to both high and low signal-to-noise ratio systems.},
doi = {10.1103/PHYSREVD.75.021301},
journal = {Physical Review. D, Particles Fields},
number = 2,
volume = 75,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}
  • Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few lightmore » years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.« less
  • Supermassive black hole binaries (SMBHBs) in galactic nuclei are thought to be a common by-product of major galaxy mergers. We use simple disk models for the circumbinary gas and for the binary-disk interaction to follow the orbital decay of SMBHBs with a range of total masses (M) and mass ratios (q), through physically distinct regions of the disk, until gravitational waves (GWs) take over their evolution. Prior to the GW-driven phase, the viscous decay is generically in the stalled 'secondary-dominated' regime. SMBHBs spend a non-negligible fraction of a fiducial time of 10{sup 7} yr at orbital periods between days {approx}<tmore » {sub orb}{approx}< yr, and we argue that they may be sufficiently common to be detectable, provided they are luminous during these stages. A dedicated optical or X-ray survey could identify coalescing SMBHBs statistically, as a population of periodically variable quasars, whose abundance obeys the scaling N {sub var} {proportional_to} t {sup {alpha}} {sub var} within a range of periods around t {sub var}{approx} tens of weeks. SMBHBs with M {approx}< 10{sup 7} M {sub sun}, with 0.5 {approx}< {alpha} {approx}< 1.5, would probe the physics of viscous orbital decay, whereas the detection of a population of higher-mass binaries, with {alpha} = 8/3, would confirm that their decay is driven by GWs. The lowest-mass SMBHBs (M {approx}< 10{sup 5-6} M {sub sun}) enter the GW-driven regime at short orbital periods, when they are already in the frequency band of the Laser Interferometric Space Antenna (LISA). While viscous processes are negligible in the last few years of coalescence, they could reduce the amplitude of any unresolved background due to near-stationary LISA sources. We discuss modest constraints on the SMBHB population already available from existing data, and the sensitivity and sky coverage requirements for a detection in future surveys. SMBHBs may also be identified from velocity shifts in their spectra; we discuss the expected abundance of SMBHBs as a function of their orbital velocity.« less
  • Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ability of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter w. Using the {lambda}CDM model of cosmology, we show that observations of precessing binaries with mass ratio 10 ratio 1 by LISA, combined with a redshift measurement, can improve the determination of w up to an order of magnitude with respectmore » to the nonprecessing case depending on the total mass and the redshift.« less
  • By the use of Einstein-Infeld-Hoffmann method, the equations of motion of a binary star system in the field of a supermassive black hole are derived. In spite of the fact that the motion of a binary system as a whole can be relativistic or even ultra-relativistic with respect to the supermassive black hole, it is shown, that under the assumption of non-relativistic relative motion of the stars in binary system, the motion of the binary system as a whole satisfies the Mathisson-Papapetrou equations with additional terms depending on quadrupole moments. Exemplary case of ultrarelativistic motion of a binary neutron starmore » in the vicinity of non-rotating black hole is considered. It it shown that the motion of binary's center of mass may considerably differ from geodesic motion.« less
  • Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing LAMBDA cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using bothmore » stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time propor tot {sup -5/3}, would stop at a time T{sub tr} approx = etaT{sub b}. Here, eta approx 0.25 and T{sub b} is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time T{sub r} approx = xi{sub b}, where xi approx 1. Both eta and xi sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.« less