## On matrix model formulations of noncommutative Yang-Mills theories

We study the stability of noncommutative spaces in matrix models and discuss the continuum limit which leads to the noncommutative Yang-Mills theories. It turns out that most noncommutative spaces in bosonic models are unstable. This indicates perturbative instability of fuzzy R{sup D} pointed out by Van Raamsdonk and Armoni et al. persists to nonperturbative level in these cases. In this sense, these bosonic noncommutative Yang-Mills theories are not well-defined, or at least their matrix model formulations studied in this paper do not work. We also show that noncommutative backgrounds are stable in a supersymmetric matrix model deformed by a cubicmore »