skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring the thickness profiles of wafers to subnanometer resolution using Fabry-Perot interferometry

Abstract

The resolution of an angle-scanning technique for measuring transparent optical wafers is analyzed, and it is shown both theoretically and experimentally that subnanometer resolution can be readily achieved. Data are acquired simultaneously over the whole area of the wafer, producing two-dimensional thickness variation maps in as little as 10 s.Repeatabilities of 0.07 nm have been demonstrated, and wafers of up to100 mm diameter have been measured, with1 mm or better spatial resolution. A technique for compensating wafer and system aberrations is incorporated and analyzed.

Authors:
; ; ;
Publication Date:
OSTI Identifier:
20929731
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Optics; Journal Volume: 46; Journal Issue: 15; Other Information: DOI: 10.1364/AO.46.002863; (c) 2007 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; DATA ACQUISITION SYSTEMS; FABRY-PEROT INTERFEROMETER; INTERFEROMETRY; LITHIUM COMPOUNDS; MAPS; MEASURING METHODS; NANOSTRUCTURES; NIOBIUM COMPOUNDS; RESONATORS; SPATIAL RESOLUTION; THICKNESS; TWO-DIMENSIONAL CALCULATIONS

Citation Formats

Farrant, David I., Arkwright, John W., Fairman, Philip S., and Netterfield, Roger P. Measuring the thickness profiles of wafers to subnanometer resolution using Fabry-Perot interferometry. United States: N. p., 2007. Web. doi:10.1364/AO.46.002863.
Farrant, David I., Arkwright, John W., Fairman, Philip S., & Netterfield, Roger P. Measuring the thickness profiles of wafers to subnanometer resolution using Fabry-Perot interferometry. United States. doi:10.1364/AO.46.002863.
Farrant, David I., Arkwright, John W., Fairman, Philip S., and Netterfield, Roger P. Sun . "Measuring the thickness profiles of wafers to subnanometer resolution using Fabry-Perot interferometry". United States. doi:10.1364/AO.46.002863.
@article{osti_20929731,
title = {Measuring the thickness profiles of wafers to subnanometer resolution using Fabry-Perot interferometry},
author = {Farrant, David I. and Arkwright, John W. and Fairman, Philip S. and Netterfield, Roger P},
abstractNote = {The resolution of an angle-scanning technique for measuring transparent optical wafers is analyzed, and it is shown both theoretically and experimentally that subnanometer resolution can be readily achieved. Data are acquired simultaneously over the whole area of the wafer, producing two-dimensional thickness variation maps in as little as 10 s.Repeatabilities of 0.07 nm have been demonstrated, and wafers of up to100 mm diameter have been measured, with1 mm or better spatial resolution. A technique for compensating wafer and system aberrations is incorporated and analyzed.},
doi = {10.1364/AO.46.002863},
journal = {Applied Optics},
number = 15,
volume = 46,
place = {United States},
year = {Sun May 20 00:00:00 EDT 2007},
month = {Sun May 20 00:00:00 EDT 2007}
}
  • This article describes the use of the Fabry--Perot laser interferometer in the fringe mode to measure velocities of fast-moving reflecting surfaces, and includes a review of previously published work. We begin by describing the theory of the Doppler shift that applies to these situations, and include an experimental test of whether surface normal direction affects Doppler shift. Formulas are derived for the analysis of the effects of shocked, dispersive, moving transparent media on velocity measurements, including expressions for the velocity of light in a moving medium with moving boundaries. The Fabry--Perot method is compared with other techniques such as themore » VISAR interferometer. We then describe in detail a standard configuration developed at our facilities, discuss other configurations using optical fibers and more than one cylinder lens, and describe a new laser amplifier developed specifically for velocimetry. Methods of alignment, instrument calibration, surface preparation, and operation are included. Next, we present several methods of analysis, the choice of which depends on the absolute accuracy required, and examine many sources of possible error. These analytical techniques allow the motion of surfaces of reflectivity of at least 1% to be measured with an absolute precision of 0.5%. Time resolution can be a few nanoseconds, and is traded off for velocity resolution. One can make continuous velocity records of surfaces whose reflectivity under shock loading decreases to less than 1% of its initial value. We have simultaneously recorded three distinct velocity--time histories without ambiguity.« less
  • A Fabry-Perot velocity interferometer system is described that uses a modified rotating mirror streak camera to recrod the dynamic fringe positions. A Los Alamos Model 72B rotating-mirror streak camera, equipped with a beryllium mirror, was modified to include a high aperture (f/2.5) relay lens and a 40-mm image-intensifier tube such that the image normally formed at the film plane of the streak camera is projected onto the intensifier tube. Fringe records for thin (0.13 mm) flyers driven by a small bridgewire detonator obtained with a Model C1155-01 Hamamatsu and Model 790 Imacon electronic streak cameras are compared with those obtainedmore » with the image-intensified rotating-mirror streak camera (I/sup 2/RMC). Resolution comparisons indicate that the I/sup 2/RMC gives better time resolution than either the Hamamatsu or the Imacon for total writing times of a few microseconds or longer.« less
  • A revised scientific instrument to measure simultaneously kinetic temperatures of different atoms from their optical emission profile is reported. Emission lines are simultaneously detected using one single scanning Fabry-Perot-interferometer (FPI) for a combined spectroscopic setup to acquire different emission lines simultaneously. The setup consists in a commercial Czerny-Turner spectrometer configuration which is combined with a scanning Fabry-Perot interferometer. The fast image acquisition mode of an intensified charge coupled device camera allows the detection of a wavelength interval of interest continuously while acquiring the highly resolved line during the scan of the FPI ramp. Results using this new setup are presentedmore » for the simultaneous detection of atomic nitrogen and oxygen in a high enthalpy air plasma flow as used for atmospheric re-entry research and their respective kinetic temperatures derived from the measured line profiles. The paper presents the experimental setup, the calibration procedure, and an exemplary result. The determined temperatures are different, a finding that has been published so far as due to a drawback of the experimental setup of sequential measurements, and which has now to be investigated in more detail.« less
  • A compact, solid-state, high-resolution spectrometer consisting of an acousto-optic tunable filter (AOTF) and a fiber-optic Fabry{endash}Perot (FFP) interferometer has been developed. The system has been designed for high-resolution inductively coupled plasma atomic emission spectroscopy (ICP-AES) applications. A description of the AOTF-FFP and its performance is presented. The resolution of the AOTF-FFP was determined by measuring the physical widths of ICP emission lines using a 1.5-m-focal-length grating spectrometer and deconvoluting the physical line shapes from the acquired AOTF-FFP spectra. Over the optimum range of the FFP mirror coatings, the resolution is sufficient for the determination of isotopic and hyperfine emission featuresmore » in ICP-AES experiments, and approaches that of the 1.5-m spectrometer. The application of the AOTF-FFP to the determination of uranium isotopes (U-235 and U-238) introduced into the ICP is presented. {copyright} {ital 1996 Society for Applied Spectroscopy.}« less
  • The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which the detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to upgrade'' the remote field sites which bare CCDs and not only retain the previous capabilities of the existing FPIs but expand themore » data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.« less