skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-laser-based scanner for three-dimensional digitization of historical artifacts

Abstract

A 3D scanner, based on incoherent illumination techniques, and associated data-processing algorithms are presented that can be used to scan objects at lateral resolutions ranging from 5 to100 {mu}m (or more) and depth resolutions of approximately 2 {mu}m.The scanner was designed with the specific intent to scan cuneiform tablets but can be utilized for other applications. Photometric stereo techniques are used to obtain both a surface normal map and a parameterized model of the object's bidirectional reflectance distribution function. The normal map is combined with height information,gathered by structured light techniques, to form a consistent 3D surface. Data from Lambertian and specularly diffuse spherical objects are presented and used to quantify the accuracy of the techniques. Scans of a cuneiform tablet are also presented. All presented data are at a lateral resolution of 26.8 {mu}m as this is approximately the minimum resolution deemed necessary to accurately represent cuneiform.

Authors:
; ;
Publication Date:
OSTI Identifier:
20929729
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Optics; Journal Volume: 46; Journal Issue: 15; Other Information: DOI: 10.1364/AO.46.002838; (c) 2007 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; ACCURACY; ALGORITHMS; ARCHAEOLOGICAL SPECIMENS; CULTURAL OBJECTS; DATA ACQUISITION; DATA PROCESSING; DISTRIBUTION FUNCTIONS; IMAGE PROCESSING; IMAGES; MORPHOLOGY; REMOTE SENSING; RESOLUTION; SIGNALS; THREE-DIMENSIONAL CALCULATIONS; VISIBLE RADIATION

Citation Formats

Hahn, Daniel V., Baldwin, Kevin C., and Duncan, Donald D. Non-laser-based scanner for three-dimensional digitization of historical artifacts. United States: N. p., 2007. Web. doi:10.1364/AO.46.002838.
Hahn, Daniel V., Baldwin, Kevin C., & Duncan, Donald D. Non-laser-based scanner for three-dimensional digitization of historical artifacts. United States. doi:10.1364/AO.46.002838.
Hahn, Daniel V., Baldwin, Kevin C., and Duncan, Donald D. Sun . "Non-laser-based scanner for three-dimensional digitization of historical artifacts". United States. doi:10.1364/AO.46.002838.
@article{osti_20929729,
title = {Non-laser-based scanner for three-dimensional digitization of historical artifacts},
author = {Hahn, Daniel V. and Baldwin, Kevin C. and Duncan, Donald D},
abstractNote = {A 3D scanner, based on incoherent illumination techniques, and associated data-processing algorithms are presented that can be used to scan objects at lateral resolutions ranging from 5 to100 {mu}m (or more) and depth resolutions of approximately 2 {mu}m.The scanner was designed with the specific intent to scan cuneiform tablets but can be utilized for other applications. Photometric stereo techniques are used to obtain both a surface normal map and a parameterized model of the object's bidirectional reflectance distribution function. The normal map is combined with height information,gathered by structured light techniques, to form a consistent 3D surface. Data from Lambertian and specularly diffuse spherical objects are presented and used to quantify the accuracy of the techniques. Scans of a cuneiform tablet are also presented. All presented data are at a lateral resolution of 26.8 {mu}m as this is approximately the minimum resolution deemed necessary to accurately represent cuneiform.},
doi = {10.1364/AO.46.002838},
journal = {Applied Optics},
number = 15,
volume = 46,
place = {United States},
year = {Sun May 20 00:00:00 EDT 2007},
month = {Sun May 20 00:00:00 EDT 2007}
}
  • The possibility of developing three-dimensional nanostructures for damaged bone and tissue restoration, including treatment of human congenital malformation is considered. Four types of multiwalled and single-walled carbon nanotubes fabricated by chemical vapor deposition via disproportionation on Fe clusters and thermal cathode sputtering in an inert gas were studied. The nanomaterial's topography was studied by atomic-force microscopy. The possibility of using 3D nanocomposites as a biosolder for laser biowelding of cartilaginous tissue was shown. The compatibility of biological tissues with a nanocomposite material in vivo introduced under the perichondrium of ear cartilage of a rabbit was validated.
  • The emission of extreme ultraviolet radiation in a 2% bandwidth centered at 13.5 nm (in-band) is measured in one hemisphere. The targets of the laser are tin droplets. In-band emission is measured at angles from the laser axis larger than 120 Degree-Sign . Analytical models representing the physical processes are developed and calibrated with the experimental data. In the models two assumptions are investigated, isentropic and isothermal 2D-axisymmetric expansion. The parameters of the models are the density distribution of the plasma and the location where the EUV emission is centered. The parameters are inferred by the calibration of the modelsmore » with the experimental data. The predictions of the models are validated with experiments where slab targets were used.« less
  • We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2π cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-viewmore » (patterning volume) of approximately 12.2 mm{sup 3} with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy.« less
  • A volume-imaging PET scanner, without interplane septa, for brain imaging has been designed and built to achieve high performance, specifically in spatial resolution and sensitivity. The scanner is unique in its use of a single annular crystal of Na(Tl), which allows a field of view (FOV) of 25.6 cm in both the transverse and axial directions. Data are reconstructed into an image matrix of 128{sup 3} with (2mm){sup 3} voxels, using three-dimensional image reconstruction algorithms. Point-source measurements are performed to determine spatial resolution over the scanner FOV, and cylindrical phantom distributions are used to determine the sensitivity, scatter fraction andmore » counting rate performance of the system a three-dimensional reconstruction algorithms. The system spatial resolution is measured to be 3.5mm in both the transverse and axial directions, in the center of the FOV. The true sensitivity, using the standard NEMA phantom (6 liter), is 660 kcps/{mu}Ci/ml, after subtracting a scatter fraction of 34%. Due to deadtime effects, we measure a peak true counting rate, after scatter and randoms subtraction, of 100 kcps at 0.7 mCi for a smaller brain-sized (1.1 liter) phantom, and 70 kcps for a head-sized (2.5 liter) phantom at the same activity. A typical {sup 18}F-FDG clinical brain study requires only 2 mCi to achieve high statistics (100 million true events) with a scan time of 30 min. The HEAD PENN-PET scanner is based on a cost-effective design using Nal(Tl) and has been shown to achieve high performance for brain studies and pediatric whole-body studies. As a full-time three-dimensional imaging scanner with a very large axial acceptance angle, high sensitivity is achieved. The system becomes counting-rate limited as the activity is increased, but we achieve high image quality with a small injected dose. This is a significant advantage for clinical imaging, particularly for pediatric patients. 38 refs., 8 figs.« less
  • A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.