# Super Picard-Fuchs equation and monodromies for supermanifolds

## Abstract

Following, Aganagic and Vafa (e-print hep-th/0403192) and Hori and Vafa (e-print hep-th/0002222), we discuss the Picard-Fuchs equation for the super Landau-Ginsburg mirror to the super Calabi-Yau in WCP{sup (3vertical bar2)}[1,1,1,3 vertical bar 1,5] (using techniques of Greene and Lazaroiu [Nucl. Phys. B 604, 181 (2001), e-print hep-th/0001025] and Misra [Fortschr. Phys. 52, 831 (2004), e-print hep-th/0311186]), Meijer basis of solutions, and monodromies (at 0,1 and {infinity}) in the large and small complex structure limits, as well as obtain the mirror hypersurface, which in the large Kaehler limit turns out to be either a bidegree-(6,6) hypersurface in WCP{sup (3|1)}[1,1,1,2]xWCP{sup (1vertical bar1)}[1,1 vertical bar 6] or a (Z{sub 2} singular) bidegree-(6,12) hypersurface in WCP{sup (3vertical bar1)}[1,1,2,6 vertical bar 6]xWCP{sup (1vertical bar1)}[1,1 vertical bar 6].

- Authors:

- Indian Institute of Technology Roorkee, Roorkee, 247 667 Uttaranchal (India)

- Publication Date:

- OSTI Identifier:
- 20929638

- Resource Type:
- Journal Article

- Resource Relation:
- Journal Name: Journal of Mathematical Physics; Journal Volume: 48; Journal Issue: 2; Other Information: DOI: 10.1063/1.2426418; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; EQUATIONS; GINZBURG-LANDAU THEORY; MATHEMATICAL MANIFOLDS; MATHEMATICAL SOLUTIONS; SUPERSTRING THEORY; SUPERSYMMETRY

### Citation Formats

```
Kaura, Payal, Misra, Aalok, and Shukla, Pramod.
```*Super Picard-Fuchs equation and monodromies for supermanifolds*. United States: N. p., 2007.
Web. doi:10.1063/1.2426418.

```
Kaura, Payal, Misra, Aalok, & Shukla, Pramod.
```*Super Picard-Fuchs equation and monodromies for supermanifolds*. United States. doi:10.1063/1.2426418.

```
Kaura, Payal, Misra, Aalok, and Shukla, Pramod. Thu .
"Super Picard-Fuchs equation and monodromies for supermanifolds". United States.
doi:10.1063/1.2426418.
```

```
@article{osti_20929638,
```

title = {Super Picard-Fuchs equation and monodromies for supermanifolds},

author = {Kaura, Payal and Misra, Aalok and Shukla, Pramod},

abstractNote = {Following, Aganagic and Vafa (e-print hep-th/0403192) and Hori and Vafa (e-print hep-th/0002222), we discuss the Picard-Fuchs equation for the super Landau-Ginsburg mirror to the super Calabi-Yau in WCP{sup (3vertical bar2)}[1,1,1,3 vertical bar 1,5] (using techniques of Greene and Lazaroiu [Nucl. Phys. B 604, 181 (2001), e-print hep-th/0001025] and Misra [Fortschr. Phys. 52, 831 (2004), e-print hep-th/0311186]), Meijer basis of solutions, and monodromies (at 0,1 and {infinity}) in the large and small complex structure limits, as well as obtain the mirror hypersurface, which in the large Kaehler limit turns out to be either a bidegree-(6,6) hypersurface in WCP{sup (3|1)}[1,1,1,2]xWCP{sup (1vertical bar1)}[1,1 vertical bar 6] or a (Z{sub 2} singular) bidegree-(6,12) hypersurface in WCP{sup (3vertical bar1)}[1,1,2,6 vertical bar 6]xWCP{sup (1vertical bar1)}[1,1 vertical bar 6].},

doi = {10.1063/1.2426418},

journal = {Journal of Mathematical Physics},

number = 2,

volume = 48,

place = {United States},

year = {Thu Feb 15 00:00:00 EST 2007},

month = {Thu Feb 15 00:00:00 EST 2007}

}