Atomic data and spectral line intensities for Mg VI
Abstract
Electron impact collision strengths, energyels, oscillator strengths, and spontaneous radiative decay rates are calculated for Mg VI. The configurations used are 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, 2p{sup 5}, 2s{sup 2}2p{sup 2}3s, 2s{sup 2}2p{sup 2}3p, and 2s{sup 2}2p{sup 2}3d, giving rise to 72 finestructure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 12, 24, 36, 48, and 60 Ry. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10{sup 8}10{sup 14} cm{sup 3} at an electron temperature of log T {sub e} (K) = 5.6, corresponding to maximum abundance of Mg VI. Relative and absolute spectral line intensities are calculated and compared with observations of a solar active region.
 Authors:
 ARTEP, Inc. at Naval Research Laboratory, Washington, DC 20375 (United States). Email: landi@poppeo.nrl.navy.mil
 NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
 Publication Date:
 OSTI Identifier:
 20900833
 Resource Type:
 Journal Article
 Resource Relation:
 Journal Name: Atomic Data and Nuclear Data Tables; Journal Volume: 93; Journal Issue: 1; Other Information: DOI: 10.1016/j.adt.2006.06.001; PII: S0092640X(06)000398; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; ABUNDANCE; ELECTRON BEAMS; ELECTRON DENSITY; ELECTRON TEMPERATURE; ELECTRONATOM COLLISIONS; ENERGY LEVELS; EQUILIBRIUM; EXCITATION; FINE STRUCTURE; INTERMEDIATE COUPLING; MAGNESIUM; MAXWELL EQUATIONS; NUCLEAR DATA COLLECTIONS; OSCILLATOR STRENGTHS; RADIATIVE DECAY; VELOCITY
Citation Formats
Landi, E., and Bhatia, A.K. Atomic data and spectral line intensities for Mg VI. United States: N. p., 2007.
Web. doi:10.1016/j.adt.2006.06.001.
Landi, E., & Bhatia, A.K. Atomic data and spectral line intensities for Mg VI. United States. doi:10.1016/j.adt.2006.06.001.
Landi, E., and Bhatia, A.K. Mon .
"Atomic data and spectral line intensities for Mg VI". United States.
doi:10.1016/j.adt.2006.06.001.
@article{osti_20900833,
title = {Atomic data and spectral line intensities for Mg VI},
author = {Landi, E. and Bhatia, A.K.},
abstractNote = {Electron impact collision strengths, energyels, oscillator strengths, and spontaneous radiative decay rates are calculated for Mg VI. The configurations used are 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, 2p{sup 5}, 2s{sup 2}2p{sup 2}3s, 2s{sup 2}2p{sup 2}3p, and 2s{sup 2}2p{sup 2}3d, giving rise to 72 finestructure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 12, 24, 36, 48, and 60 Ry. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10{sup 8}10{sup 14} cm{sup 3} at an electron temperature of log T {sub e} (K) = 5.6, corresponding to maximum abundance of Mg VI. Relative and absolute spectral line intensities are calculated and compared with observations of a solar active region.},
doi = {10.1016/j.adt.2006.06.001},
journal = {Atomic Data and Nuclear Data Tables},
number = 1,
volume = 93,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}

Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Mg V. The configurations used are 2s{sup 2}2p{sup 4}, 2s2p{sup 5}, 2p{sup 6}, 2s{sup 2}2p{sup 3}3s, 2s{sup 2}2p{sup 3}3p, and 2s{sup 2}2p{sup 3}3d, giving rise to 86 finestructure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 10, 20, 30, 40, and 50 Ry, in the distorted wave approximation. Excitation rate coefficients (not tabulated here) are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. To calculate excitation rate coefficients, collision strengths at low and highmore »

Atomic data and spectral line intensities for Mg IX
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Mg IX. The configurations used are 2s{sup 2}, 2s2p, 2p{sup 2}, 2l3l', 2l4l' and 2s5l', with l = s, p and l' = s, p, d giving rise to 92 finestructure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (6, 12, 25, 50, 75, 100, and 125 Ry) for the transitions within the three lowest configurations, and five incident energies (25, 50, 75, 100, and 125 Ry) for transitions between the ground configuration and the n = 3, 4, 5more » 
Atomic data and spectral line intensities for Ni XVI
Electron impact collision strengths and spontaneous radiative decay rates are calculated for Ni XVL. The data pertain to the 40 levels of the configurations 3s{sup 2}3p, 3s3p{sup 2}, 3s{sup 2}3d, 3p{sup 3}, and 3s3p3d. Collision strengths are calculated at five incident electron energies: 10.0, 20.0, 30.0, 40.0 and 50.0 Ry. Relative spectral line intensities are calculated for all astrophysically important transitions. These are obtained by computing the excitation rate coefficients (cm{sup 3} s{sup {minus}1}), that is, the collision strengths integrated over a Maxwellian electron distribution, and then solving the equations of detailed balance for the populations of the 40 energymore » 
Atomic data and spectral line intensities for Fe XI
Electron impact collision strengths and spontaneous radiative decay rates are calculated for Fe XI. The data pertain to the 48 levels of the configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, and 3p{sup 6}. Collision strengths are calculated at three incident electron energies, 8.0, 16.0, and 24.0 Ry. Relative spectral line intensities are calculated for all astrophysically important transitions. These are obtained by computing the excitation rate coefficients, i.e., the collision strengths integrated over a Maxwellian electron distribution, and then solving the equations of detailed balance for the populations of the 48 energy levels, assuming a collisional excitation modelmore » 
Atomic data and spectral line intensities for highly ionized tungsten (Colike W{sup 47+} to Rblike W37{sup +}) in a hightemperature, lowdensity plasma
Calculated transition wavelengths, oscillator strengths, and collisionalradiative line intensities are presented for the 11 tungsten (Z = 74) ions from Colike W{sup 47+} to Rblike W{sup 37+}. Fully relativistic, ab initio calculations have been carried out for the ion structure in each case, and a detailed collisionalradiative model has been constructed. Electric and magnetic dipole and quadrupole (E1, M1, E2, and M2) transitions are considered, and references are given to continuing experiments where the present tungsten emission features may be observed. These studies are of interest to the fusion community.