skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved efficiency of the chemical bath deposition method during growth of ZnO thin films

Journal Article · · Materials Research Bulletin

Chemical bath deposition (CBD) is an inexpensive and low temperature method (25-90 deg. C) that allows to deposit large area semiconductor thin films. However, the extent of the desired heterogeneous reaction upon the substrate surface is limited first by the competing homogeneous reaction, which is responsible for colloidal particles formation in the bulk solution, and second, by the material deposition on the CBD reactor walls. Therefore, the CBD method exhibits low efficiency in terms of profiting the whole amount of starting materials. The present work describes a procedure to deposit ZnO thin films by CBD in an efficient way, since it offers the possibility to minimize both the undesirable homogeneous reaction in the bulk solution and the material deposition on the CBD reactor walls. In a first stage, zinc peroxide (ZnO{sub 2}) crystallizing with cubic structure is obtained. This compound shows a good average transparency (90%) and an optical bandgap of 4.2 eV. After an annealing process, the ZnO{sub 2} suffers a transformation toward polycrystalline ZnO with hexagonal structure and 3.25 eV of optical bandgap. The surface morphology of the films, analyzed by atomic force microscope (AFM), reveals three-dimensional growth features as well as no colloidal particles upon the surface, therefore indicating the predominance of the heterogeneous reaction during the growth.

OSTI ID:
20887981
Journal Information:
Materials Research Bulletin, Vol. 38, Issue 7; Other Information: DOI: 10.1016/S0025-5408(03)00083-7; PII: S0025540803000837; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English