skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers

Abstract

The structure and extinction characteristics of counterflow diffusion flames with flame radiation and nonunity Lewis numbers of the fuel and oxidant are examined using multiscale asymptotic theory, and a model expressed in terms of the jump relations and reactant leakages with the proper consideration of the excess enthalpy overlooked in previous analyses is developed. The existence of the dual extinction limits in the presence of radiative heat loss, namely the kinetic limit at small Damkoehler number (high stretch rate) and the radiative limit at large Damkoehler number (low stretch rate), are identified. It is found that the former is minimally affected by radiative loss, while a substantial amount of heat loss is associated with the radiative limit. Reactant leakage, however, is the root cause for both limits. The influence of radiative loss on the extinction Damkoehler numbers is found to be through its effects on the flame temperature, the excess enthalpy, and the reduced extinction Damkoehler number. At both extinction limits, the contribution from the flame temperature is always important and dominant. The contributions from the other two, however, could be important in some special cases. At small Le{sub F}, the contribution from the reduced extinction Damkoehler number is largemore » and even dominant under small radiative loss. The contribution from the excess enthalpy is important for small Le{sub O} and it may be comparable to the contribution from the flame temperature when radiative loss is small. Thus, overlooking the excess enthalpy in previous analyses may have resulted in rather large error in the predicted extinction Damkoehler numbers, especially the kinetic one. (author)« less

Authors:
;  [1];  [2]
  1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (United States)
  2. Department of Marine Engineering, National Taiwan Ocean University, Keelung (Taiwan)
Publication Date:
OSTI Identifier:
20864953
Resource Type:
Journal Article
Resource Relation:
Journal Name: Combustion and Flame; Journal Volume: 148; Journal Issue: 3; Other Information: Elsevier Ltd. All rights reserved
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ENTHALPY; HEAT LOSSES; FLAMES; DIFFUSION; COMBUSTION PROPERTIES; LEAKS; ERRORS; FLAME EXTINCTION; RADIATIVE COOLING; LIMITING VALUES

Citation Formats

Wang, H.Y., Law, C.K., and Chen, W.H. Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers. United States: N. p., 2007. Web. doi:10.1016/J.COMBUSTFLAME.2006.10.005.
Wang, H.Y., Law, C.K., & Chen, W.H. Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers. United States. doi:10.1016/J.COMBUSTFLAME.2006.10.005.
Wang, H.Y., Law, C.K., and Chen, W.H. Thu . "Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers". United States. doi:10.1016/J.COMBUSTFLAME.2006.10.005.
@article{osti_20864953,
title = {Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers},
author = {Wang, H.Y. and Law, C.K. and Chen, W.H.},
abstractNote = {The structure and extinction characteristics of counterflow diffusion flames with flame radiation and nonunity Lewis numbers of the fuel and oxidant are examined using multiscale asymptotic theory, and a model expressed in terms of the jump relations and reactant leakages with the proper consideration of the excess enthalpy overlooked in previous analyses is developed. The existence of the dual extinction limits in the presence of radiative heat loss, namely the kinetic limit at small Damkoehler number (high stretch rate) and the radiative limit at large Damkoehler number (low stretch rate), are identified. It is found that the former is minimally affected by radiative loss, while a substantial amount of heat loss is associated with the radiative limit. Reactant leakage, however, is the root cause for both limits. The influence of radiative loss on the extinction Damkoehler numbers is found to be through its effects on the flame temperature, the excess enthalpy, and the reduced extinction Damkoehler number. At both extinction limits, the contribution from the flame temperature is always important and dominant. The contributions from the other two, however, could be important in some special cases. At small Le{sub F}, the contribution from the reduced extinction Damkoehler number is large and even dominant under small radiative loss. The contribution from the excess enthalpy is important for small Le{sub O} and it may be comparable to the contribution from the flame temperature when radiative loss is small. Thus, overlooking the excess enthalpy in previous analyses may have resulted in rather large error in the predicted extinction Damkoehler numbers, especially the kinetic one. (author)},
doi = {10.1016/J.COMBUSTFLAME.2006.10.005},
journal = {Combustion and Flame},
number = 3,
volume = 148,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}