skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process

Abstract

Comprehensive two-dimensional gas chromatography (GC) coupled to time-of-flight mass spectrometry (MS) has been applied to the analysis of coal-derived liquids from the former British Coal Point-of-Ayr coal liquefaction plant. The feed to the hydrocracker and the resulting product were analyzed. The results refer almost exclusively to the plant-derived recycle solvent, known as the liquefaction solvent; the molecular mass range of the GC does not exceed that of the solvent. The method allows for the resolution of the numerous structural isomers of tetralin and methyl indan, one pair of hydrogen-donor (necessary for the dissolution of coal) and isomeric nondonor (that reduce the hydrogen donors) components of the recycle solvent. In addition, the n-alkanes that concentrate in the recycle solvent are easily observed in comparison with the results from one-dimensional GC-MS. 24 refs., 6 figs., 1 tab.

Authors:
; ; ; ; ;  [1]
  1. University of York, York (United Kingdom). Department of Chemistry
Publication Date:
OSTI Identifier:
20862169
Resource Type:
Journal Article
Resource Relation:
Journal Name: Energy and Fuels; Journal Volume: 21; Journal Issue: 1; Other Information: a.herod@imperial.ac.uk
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; GAS CHROMATOGRAPHY; MASS SPECTROSCOPY; COAL LIQUIDS; COAL LIQUEFACTION; SOLVENTS; MOLECULAR WEIGHT; ALKANES; STRUCTURAL CHEMICAL ANALYSIS

Citation Formats

Jacqui F. Hamilton, Alistair. C. Lewis, Marcos Millan, Keith D. Bartle, Alan A. Herod, and Rafael Kandiyoti. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process. United States: N. p., 2007. Web. doi:10.1021/ef060366i.
Jacqui F. Hamilton, Alistair. C. Lewis, Marcos Millan, Keith D. Bartle, Alan A. Herod, & Rafael Kandiyoti. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process. United States. doi:10.1021/ef060366i.
Jacqui F. Hamilton, Alistair. C. Lewis, Marcos Millan, Keith D. Bartle, Alan A. Herod, and Rafael Kandiyoti. Mon . "Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process". United States. doi:10.1021/ef060366i.
@article{osti_20862169,
title = {Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process},
author = {Jacqui F. Hamilton and Alistair. C. Lewis and Marcos Millan and Keith D. Bartle and Alan A. Herod and Rafael Kandiyoti},
abstractNote = {Comprehensive two-dimensional gas chromatography (GC) coupled to time-of-flight mass spectrometry (MS) has been applied to the analysis of coal-derived liquids from the former British Coal Point-of-Ayr coal liquefaction plant. The feed to the hydrocracker and the resulting product were analyzed. The results refer almost exclusively to the plant-derived recycle solvent, known as the liquefaction solvent; the molecular mass range of the GC does not exceed that of the solvent. The method allows for the resolution of the numerous structural isomers of tetralin and methyl indan, one pair of hydrogen-donor (necessary for the dissolution of coal) and isomeric nondonor (that reduce the hydrogen donors) components of the recycle solvent. In addition, the n-alkanes that concentrate in the recycle solvent are easily observed in comparison with the results from one-dimensional GC-MS. 24 refs., 6 figs., 1 tab.},
doi = {10.1021/ef060366i},
journal = {Energy and Fuels},
number = 1,
volume = 21,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}
  • There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less
  • Two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC – TOFMS) is a highly capable instrumental platform that produces complex and information-rich multi-dimensional chemical data. The complex data can be overwhelming, especially when many samples (of various sample classes) are analyzed with multiple injections for each sample. Thus, the data must be analyzed in such a way to extract the most meaningful information. The pixel-based and peak table-based algorithmic use of Fisher ratios has been used successfully in the past to reduce the multi-dimensional data down to those chemical compounds that are changing between classes relative tomore » those that are not (i.e., chemical feature selection). We report on the initial development of a computationally fast novel tile-based Fisher-ratio software that addresses challenges due to 2D retention time misalignment without explicitly aligning the data, which is a problem for both pixel-based and peak table- based methods. Concurrently, the tile-based Fisher-ratio software maximizes the sensitivity contrast of true positives against a background of potential false positives and noise. To study this software, eight compounds, plus one internal standard, were spiked into diesel at various concentrations. The tile-based F-ratio software was able to discover all spiked analytes, within the complex diesel sample matrix with thousands of potential false positives, in each possible concentration comparison, even at the lowest absolute spiked analyte concentration ratio of 1.06.« less
  • Multi-dimensional chromatographic instrumentation produces information-rich, and chemically complex data containing meaningful chemical signals and/or chemical patterns. Two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC – TOFMS) is a prominent instrumental platform that has been applied extensively for discovery-based experimentation, where samples are sufficiently volatile or amenable to derivatization. Use of GC × GC – TOFMS and associated data analysis strategies aim to uncover meaningful chemical signals or chemical patterns. However, for complex samples, meaningful chemical information is often buried in a background of less meaningful chemical signal and noise. In this report, we utilize the tile-based F-ratiomore » software in concert with the standard addition method by spiking non-native chemicals into a diesel fuel matrix at low concentrations. While the previous work studied the concentration range of 100-1000 ppm, the current study focuses on the 0 ppm to 100 ppm analyte spike range. This study demonstrates the sensitivity and selectivity of the tile-based F-ratio software for discovery of true positives in the non-targeted analysis of a chemically complex and analytically challenging sample matrix. By exploring the low concentration spike levels, we gain a better understanding of the limit of detection (LOD) of the tile-based F-ratio software with GC × GC – TOFMS data.« less
  • The illicit chemical alteration of petroleum fuels is of scientific interest, particularly to regulatory agencies which set fuel specifications, or excises based on those specifications. One type of alteration is the reaction of diesel fuel with concentrated sulfuric acid. Such reactions are known to subtly alter the chemical composition of the fuel, particularly the aromatic species native to the fuel. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC–TOFMS) is ideally suited for the analysis of diesel fuel, but may provide the analyst with an overwhelming amount of data, particularly in sample-class comparison experiments comprised of manymore » samples. The tile-based Fisher-ratio (F-ratio) method reduces the abundance of data in a GC × GC–TOFMS experiment to only the peaks which significantly distinguish the unaltered and acid altered sample classes. Three samples of diesel fuel from different filling stations were each altered to discover chemical features, i.e., analyte peaks, which were consistently changed by the acid reaction. Using different fuels prioritizes the discovery of features which are likely to be robust to the variation present between fuel samples and which will consequently be useful in determining whether an unknown sample has been acid altered. The subsequent analysis confirmed that aromatic species are removed by the acid alteration, with the degree of removal consistent with predicted reactivity toward electrophilic aromatic sulfonation. Additionally, we observed that alkenes and alkynes were also removed from the fuel, and that sulfur dioxide or compounds that degrade to sulfur dioxide are generated by the acid alteration. In addition to applying the previously reported tile-based F-ratio method, this report also expands null distribution analysis to algorithmically determine an F-ratio threshold to confidently select only the features which are sufficiently class-distinguishing. When applied to the acid alteration of diesel fuel, the suggested per-hit F-ratio threshold was 12.4, which is predicted to maintain the false discovery rate (FDR) below 0.1%. Using this F-ratio threshold, 107 of the 3362 preliminary hits were deemed significantly changing due to the acid alteration, with the number of false positives estimated to be about 3.« less