skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seeing an Invisible Axion in the Supersymmetric Particle Spectrum

Abstract

I describe how under favorable circumstances, the existence of an invisible axion could correlate with a distinctive CERN Large Hadron Collider sparticle spectrum, in particular, through a gluino {approx}ln(M{sub P}/m{sub 3/2}) times heavier than other gauginos.

Authors:
 [1]
  1. DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
Publication Date:
OSTI Identifier:
20861538
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review Letters; Journal Volume: 97; Journal Issue: 26; Other Information: DOI: 10.1103/PhysRevLett.97.261802; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; AXIONS; CERN; CERN LHC; SPARTICLES; SPECTRA

Citation Formats

Conlon, Joseph P. Seeing an Invisible Axion in the Supersymmetric Particle Spectrum. United States: N. p., 2006. Web. doi:10.1103/PHYSREVLETT.97.261802.
Conlon, Joseph P. Seeing an Invisible Axion in the Supersymmetric Particle Spectrum. United States. doi:10.1103/PHYSREVLETT.97.261802.
Conlon, Joseph P. Sun . "Seeing an Invisible Axion in the Supersymmetric Particle Spectrum". United States. doi:10.1103/PHYSREVLETT.97.261802.
@article{osti_20861538,
title = {Seeing an Invisible Axion in the Supersymmetric Particle Spectrum},
author = {Conlon, Joseph P.},
abstractNote = {I describe how under favorable circumstances, the existence of an invisible axion could correlate with a distinctive CERN Large Hadron Collider sparticle spectrum, in particular, through a gluino {approx}ln(M{sub P}/m{sub 3/2}) times heavier than other gauginos.},
doi = {10.1103/PHYSREVLETT.97.261802},
journal = {Physical Review Letters},
number = 26,
volume = 97,
place = {United States},
year = {Sun Dec 31 00:00:00 EST 2006},
month = {Sun Dec 31 00:00:00 EST 2006}
}
  • We reexamine the axion-photon couplings in various invisible axion models motivated by the recent proposal of using optical interferometry at the ASST facility at the SSCL to search for the axion. We illustrate that the assignment of U(1){sub PQ} charges for the fermion fields plays an important role in determining the couplings. Several simple nonminimal invisible axion models with suppressed and enhanced axion-photon couplings are constructed, respectively. We also discuss the implications of possible new experiments to detect solar axions by conversion to x rays in a static magnetic apparatus tracking the Sun.
  • This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Finally, ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
  • This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Finally, ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
  • Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ∼ f {sub a} {sup 2}/ M {sub P} {sub ∼} 100−300 GeV while the SUSY particle mass scale m {sub SUSY}∼ 1−10 TeV >> μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m {sub a} dependsmore » on the mixed axion-higgsino relic density. The range of m {sub a} is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.« less
  • Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Airmore » scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r{sup 2} = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r{sup 2} = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.« less