skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polarized IR studies of silica glasses exposed to polarized excimer radiation

Abstract

Silica glass exhibits a permanent anisotropic response, polarization-induced birefringence (PIB), when exposed to short-wavelength polarized light. This behavior has been correlated with the OH content of the glass. In this paper we describe polarized infrared studies of silica glasses of different OH content exposed with polarized 157 nm laser light. Changes in the fundamental OH band as a consequence of exposure are shown. We find differential bleaching of a particular OH band where OH species that are oriented parallel to the incident exposing polarization undergo greater bleaching than those oriented perpendicular. The preferential bleaching as a function of exposure time correlates strongly with the evolution of PIB, leading to a bleaching model of OH that is causally linked to PIB.

Authors:
; ;  [1]
  1. Science and Technology Division, Corning, Inc., Corning, New York 14830 (United States)
Publication Date:
OSTI Identifier:
20861437
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of the Optical Society of America. Part B, Optical Physics; Journal Volume: 23; Journal Issue: 12; Other Information: DOI: 10.1364/JOSAB.23.002511; (c) 2006 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABSORPTION; ANISOTROPY; BIREFRINGENCE; BLEACHING; GLASS; LASERS; POLARIZATION; SILICA; VISIBLE RADIATION; WAVELENGTHS

Citation Formats

Smith, Charlene M., Borrelli, Nicholas F., and Tingley, James E.. Polarized IR studies of silica glasses exposed to polarized excimer radiation. United States: N. p., 2006. Web. doi:10.1364/JOSAB.23.002511.
Smith, Charlene M., Borrelli, Nicholas F., & Tingley, James E.. Polarized IR studies of silica glasses exposed to polarized excimer radiation. United States. doi:10.1364/JOSAB.23.002511.
Smith, Charlene M., Borrelli, Nicholas F., and Tingley, James E.. Fri . "Polarized IR studies of silica glasses exposed to polarized excimer radiation". United States. doi:10.1364/JOSAB.23.002511.
@article{osti_20861437,
title = {Polarized IR studies of silica glasses exposed to polarized excimer radiation},
author = {Smith, Charlene M. and Borrelli, Nicholas F. and Tingley, James E.},
abstractNote = {Silica glass exhibits a permanent anisotropic response, polarization-induced birefringence (PIB), when exposed to short-wavelength polarized light. This behavior has been correlated with the OH content of the glass. In this paper we describe polarized infrared studies of silica glasses of different OH content exposed with polarized 157 nm laser light. Changes in the fundamental OH band as a consequence of exposure are shown. We find differential bleaching of a particular OH band where OH species that are oriented parallel to the incident exposing polarization undergo greater bleaching than those oriented perpendicular. The preferential bleaching as a function of exposure time correlates strongly with the evolution of PIB, leading to a bleaching model of OH that is causally linked to PIB.},
doi = {10.1364/JOSAB.23.002511},
journal = {Journal of the Optical Society of America. Part B, Optical Physics},
number = 12,
volume = 23,
place = {United States},
year = {Fri Dec 15 00:00:00 EST 2006},
month = {Fri Dec 15 00:00:00 EST 2006}
}
  • KrF- and ArF-excimer-laser-induced absorption of silica glasses produced by electric melting and flame fusion of synthetic silica powder were investigated. The growth of KrF-laser-induced absorption was more gradual than that of ArF-laser-induced absorption. Induced absorption spectra exhibited a peak at about 5.8 eV, of which the position and width differed slightly among samples and laser species. Widths of ArF-laser-induced absorption spectra were wider than those of KrF-laser-induced spectra. KrF-laser-induced absorption is reproducible by two Gaussian absorption bands peaking at 5.80 eV with full width at half maximum (FWHM) of 0.62 eV and at 6.50 eV with FWHM of 0.74 eV.more » For reproduction of ArF-laser-induced absorption, Gaussian bands at 5.41 eV with FWHM of 0.62 eV was necessary in addition to components used for reproducing KrF-laser-induced absorption. Based on the discussion of the change of defect structures evaluated from change of absorption components, we proposed that the precursor of the 5.8-eV band ascribed to E Prime center ({identical_to}Si{center_dot}) is {identical_to}Si-H HO-Si{identical_to} structures formed by the reaction between strained Si-O-Si bonds and interstitial H{sub 2} molecules during the irradiation.« less
  • Ultraviolet excimer lasers are being considered for use in a variety of refractive and therapeutic procedures, the long-term biologic consequences of which are unknown. The effect of sublethal doses of 193-nm laser radiation on cellular DNA was examined in cultured human skin fibroblasts. In contrast to 248 nm, treatments with the 193-nm laser radiation below 70 J/m2 did not cause significant pyrimidine dimer formation in the skin cells. This was indicated by the lack of excision repair activities (unscheduled DNA synthesis assay), and further demonstrated by direct analysis of pyrimidine dimers in DNA from irradiated cells. However, a low levelmore » of unscheduled DNA synthesis could be detected following irradiation at 193 nm with 70 J/m2. Both the 193-nm and 248-nm radiation were able to induce chromosomal aberrations, as indicated by a micronucleus assay. A dose-dependent increase in micronuclei frequency was observed 48 and 72 h after laser irradiation. These results indicate that exposure of actively replicating human skin fibroblasts to sublethal doses of either 193- or 248-nm laser radiation can result in genotoxicity.« less
  • We report time- and mass-resolved measurements of Si{sup +} and O{sup +} emission from ultraviolet-grade fused silica during exposure to pulsed 157 nm excimer laser radiation at fluences below the threshold for optical breakdown. The emission intensities are increased by treatments that increase the density of surface defects, such as abrasion, and are reduced by treatments that reduce the density of surface defects, such as annealing. Ion emission is a sensitive probe of mechanical damage on silica surfaces. The mean ion kinetic energies are typically several eV: 8-9 eV for Si{sup +} and about 4 eV for O{sup +}. Hartree-Fockmore » studies of candidate defect sites suggest that antibonding states excited by 157 nm photons play a critical role in the release of these ions. We propose that positive ion emission from fused silica under these conditions is best explained by a hybrid mechanism involving (a) the excitation of an antibonding chemical state (Menzel-Gomer-Redhead mechanism) and (b) the acceleration of the positive ion by repulsive electrostatic forces due to the photoionization of nearby electron traps.« less
  • We report mass-resolved time-of-flight measurements of neutral Si, O, and SiO from ultraviolet-grade fused silica during pulsed 157-nm irradiation at fluences well below the threshold for optical breakdown. Although the emission intensities are strongly affected by thermal treatments that affect the density of strained bonds in the lattice, they are not consistently affected by mechanical treatments that alter the density of point defects, such as polishing and abrasion. We propose that the absorption of single 157 nm photons cleave strained bonds to produce defects that subsequently diffuse to the surface. There they react with dangling bonds to release neutral atomsmore » and molecules. Hartree-Fock calculations on clusters containing these defects support the contention that defect interactions can yield emission. More direct emission by the photoelectronic excitation of antibonding chemical states is also supported.« less
  • We report mass- and time-resolved measurements of negative ions produced by exposing fused silica to 157 nm radiation at fluences below the threshold for optical breakdown. The principal observed negative ions are O{sup -}, Si{sup -}, and SiO{sup -}, in order of decreasing intensity. The peak in the negative ion time-of-flight signals occurs after the peak in the positive ion signal and before the peak in the corresponding neutral atom or molecule signal. The negative ion intensities are strong functions of the degree of overlap between the positive ion and neutral atom densities. We propose that O{sup -}, Si{sup -},more » and SiO{sup -} are created after the laser pulse, by electron attachment to these neutral particles and that the electrons participating in attachment events are trapped in the electrostatic potential of the positive ions.« less