skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551

Abstract

The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.

Authors:
 [1];  [1];  [1];  [2];  [3];  [3];  [4]
  1. Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046 (India)
  2. Department of Molecular Microbiology, John Innes Centre, NR4 7UH Norwich (United Kingdom)
  3. National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560065 (India)
  4. Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046 (India). E-mail: sdsl@uohyd.ernet.in
Publication Date:
OSTI Identifier:
20857927
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 351; Journal Issue: 3; Other Information: DOI: 10.1016/j.bbrc.2006.10.080; PII: S0006-291X(06)02335-7; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; AFFINITY; ALDEHYDES; CLEAVAGE; FISSION PRODUCTS; GENES; HYDROLASES; KETONES; PYROCATECHOL; SIMULATION

Citation Formats

Khajamohiddin, Syed, Babu, Pakala Suresh, Chakka, Deviprasanna, Merrick, Mike, Bhaduri, Anirban, Sowdhamini, Ramanathan, and Siddavattam, Dayananda. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551. United States: N. p., 2006. Web. doi:10.1016/j.bbrc.2006.10.080.
Khajamohiddin, Syed, Babu, Pakala Suresh, Chakka, Deviprasanna, Merrick, Mike, Bhaduri, Anirban, Sowdhamini, Ramanathan, & Siddavattam, Dayananda. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551. United States. doi:10.1016/j.bbrc.2006.10.080.
Khajamohiddin, Syed, Babu, Pakala Suresh, Chakka, Deviprasanna, Merrick, Mike, Bhaduri, Anirban, Sowdhamini, Ramanathan, and Siddavattam, Dayananda. Fri . "A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551". United States. doi:10.1016/j.bbrc.2006.10.080.
@article{osti_20857927,
title = {A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551},
author = {Khajamohiddin, Syed and Babu, Pakala Suresh and Chakka, Deviprasanna and Merrick, Mike and Bhaduri, Anirban and Sowdhamini, Ramanathan and Siddavattam, Dayananda},
abstractNote = {The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.},
doi = {10.1016/j.bbrc.2006.10.080},
journal = {Biochemical and Biophysical Research Communications},
number = 3,
volume = 351,
place = {United States},
year = {Fri Dec 22 00:00:00 EST 2006},
month = {Fri Dec 22 00:00:00 EST 2006}
}
  • Meta-cleavage product (MCP) hydrolases are members of the {alpha}/{beta}-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 {angstrom} resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decaymore » of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of {sup 18}O into the benzoate produced during hydrolysis in H{sub 2}{sup 18}O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES{sup red}, previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.« less
  • Dibenzofuran (DBF) has been used in some recent studies as a model compound for investigating the microbial degradation of cyclic biaryl ethers. Public attention has focused on this class of compounds, since it comprises some of the most pernicious and persistent molecules, such as TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). For DBF, the most simple cyclic biaryl ether, a novel degradation mechanism involving angular dioxygenation has been described with 3-(2-hydroxyphenyl)catechol (HPC) as a central intermediate. Definite proof for this mechanism is presented in this paper, and the total degradation of DBF by Brevibacterium is described.
  • A psychrophilic malate dehydrogenase from the novel Antarctic bacterium F. frigidimaris KUC-1 was crystallized using the hanging-drop vapour-diffusion method. The crystals contained one tetrameric molecule per asymmetric unit. The best crystal diffracted to 1.8 Å resolution. Flavobacterium frigidimaris KUC-1 is a novel psychrotolerant bacterium isolated from Antarctic seawater. Malate dehydrogenase (MDH) is an essential metabolic enzyme in the citric acid cycle and has been cloned, overexpressed and purified from F. frigidimaris KUC-1. In contrast to the already known dimeric form of MDH from the psychrophile Aquaspirillium arcticum, F. frigidimaris MDH exists as a tetramer. It was crystallized at 288 Kmore » by the hanging-drop vapour-diffusion method using ammonium sulfate as the precipitating agent. The crystal diffracted to a maximum resolution of 1.80 Å. It contains one tetrameric molecule in the asymmetric unit.« less
  • Flavobacterium suncheonense is a member of the family Flavobacteriaceae in the phylum Bacteroidetes. Strain GH29-5 T (DSM 17707 T ) was isolated from greenhouse soil in Suncheon, South Korea. F. suncheonense GH29-5 T is part of the Genomic Encyclopedia of Bacteria and Archaea project. The 2,880,663 bp long draft genome consists of 54 scaffolds with 2739 protein-coding genes and 82 RNA genes. The genome of strain GH29-5 T has 117 genes encoding peptidases but a small number of genes encoding carbohydrate active enzymes (51 CAZymes). Metallo and serine peptidases were found most frequently. Among CAZymes, eight glycoside hydrolase families, ninemore » glycosyl transferase families, two carbohydrate binding module families and four carbohydrate esterase families were identified. Suprisingly, polysaccharides utilization loci (PULs) were not found in strain GH29-5 T . Based on the coherent physiological and genomic characteristics we suggest that F. suncheonense GH29-5 T feeds rather on proteins than saccharides and lipids.« less
  • Polychlorinated biphenyls (PCBs) are recognized as a groups of the most persistent pollutants. Many bacterial strains are recognized as PCB and biphenyl degraders, and after further degradation their catabolites are ultimate utilized as carbon and energy sources. Pseudomonas sp. is a natural isolate which can grow in biphenyl or 4-chlorobiphenyl as the sole carbon and energy source. In this study, nucleotide sequences of the pcbC and pcbD genes of Pseudomonas sp. strain D-J-12 were analyzed. 29 refs., 3 figs., 1 tab.