skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluating the impact of x-ray spectral shape on image quality in flat-panel CT breast imaging

Abstract

In recent years, there has been an increasing interest in exploring the feasibility of dedicated computed tomography (CT) breast imaging using a flat-panel digital detector in a truncated cone-beam imaging geometry. Preliminary results are promising and it appears as if three-dimensional tomographic imaging of the breast has great potential for reducing the masking effect of superimposed parenchymal structure typically observed with conventional mammography. In this study, a mathematical framework used for determining optimal design and acquisition parameters for such a CT breast imaging system is described. The ideal observer signal-to-noise ratio (SNR) is used as a figure of merit, under the assumptions that the imaging system is linear and shift invariant. Computation of the ideal observer SNR used a parallel-cascade model to predict signal and noise propagation through the detector, as well as a realistic model of the lesion detection task in breast imaging. For all evaluations, the total mean glandular dose for a CT breast imaging study was constrained to be approximately equivalent to that of a two-view conventional mammography study. The framework presented was used to explore the effect of x-ray spectral shape across an extensive range of kVp settings, filter material types, and filter thicknesses. The resultsmore » give an indication of how spectral shape can affect image quality in flat-panel CT breast imaging.« less

Authors:
; ; ;  [1];  [2];  [2];  [2]
  1. Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
20853934
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 1; Other Information: DOI: 10.1118/1.2388574; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; CARCINOMAS; COMPUTERIZED TOMOGRAPHY; EVALUATION; GYNECOLOGY; IMAGE PROCESSING; IMAGES; MAMMARY GLANDS; PERFORMANCE; SIGNAL-TO-NOISE RATIO; X RADIATION

Citation Formats

Glick, Stephen J., Thacker, Samta, Gong Xing, Liu, Bob, Radiation Monitoring Devices, Inc., 44 Hunt Street, Watertown, Massachusetts 02172, Department of Medical Physics and Radiation Oncology, Rush University Medical Center, Chicago, Illinois, 60612, and Massachusetts General Hospital, Boston, Massachusetts 02114. Evaluating the impact of x-ray spectral shape on image quality in flat-panel CT breast imaging. United States: N. p., 2007. Web. doi:10.1118/1.2388574.
Glick, Stephen J., Thacker, Samta, Gong Xing, Liu, Bob, Radiation Monitoring Devices, Inc., 44 Hunt Street, Watertown, Massachusetts 02172, Department of Medical Physics and Radiation Oncology, Rush University Medical Center, Chicago, Illinois, 60612, & Massachusetts General Hospital, Boston, Massachusetts 02114. Evaluating the impact of x-ray spectral shape on image quality in flat-panel CT breast imaging. United States. doi:10.1118/1.2388574.
Glick, Stephen J., Thacker, Samta, Gong Xing, Liu, Bob, Radiation Monitoring Devices, Inc., 44 Hunt Street, Watertown, Massachusetts 02172, Department of Medical Physics and Radiation Oncology, Rush University Medical Center, Chicago, Illinois, 60612, and Massachusetts General Hospital, Boston, Massachusetts 02114. Mon . "Evaluating the impact of x-ray spectral shape on image quality in flat-panel CT breast imaging". United States. doi:10.1118/1.2388574.
@article{osti_20853934,
title = {Evaluating the impact of x-ray spectral shape on image quality in flat-panel CT breast imaging},
author = {Glick, Stephen J. and Thacker, Samta and Gong Xing and Liu, Bob and Radiation Monitoring Devices, Inc., 44 Hunt Street, Watertown, Massachusetts 02172 and Department of Medical Physics and Radiation Oncology, Rush University Medical Center, Chicago, Illinois, 60612 and Massachusetts General Hospital, Boston, Massachusetts 02114},
abstractNote = {In recent years, there has been an increasing interest in exploring the feasibility of dedicated computed tomography (CT) breast imaging using a flat-panel digital detector in a truncated cone-beam imaging geometry. Preliminary results are promising and it appears as if three-dimensional tomographic imaging of the breast has great potential for reducing the masking effect of superimposed parenchymal structure typically observed with conventional mammography. In this study, a mathematical framework used for determining optimal design and acquisition parameters for such a CT breast imaging system is described. The ideal observer signal-to-noise ratio (SNR) is used as a figure of merit, under the assumptions that the imaging system is linear and shift invariant. Computation of the ideal observer SNR used a parallel-cascade model to predict signal and noise propagation through the detector, as well as a realistic model of the lesion detection task in breast imaging. For all evaluations, the total mean glandular dose for a CT breast imaging study was constrained to be approximately equivalent to that of a two-view conventional mammography study. The framework presented was used to explore the effect of x-ray spectral shape across an extensive range of kVp settings, filter material types, and filter thicknesses. The results give an indication of how spectral shape can affect image quality in flat-panel CT breast imaging.},
doi = {10.1118/1.2388574},
journal = {Medical Physics},
number = 1,
volume = 34,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}
  • Purpose: The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. Methods: Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values ofmore » the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. Results: The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%-15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. Conclusions: The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio, measured with the beam-stop methods.« less
  • The purpose of this study is to evaluate the performance of an antiscatter grid and its potential benefit on image quality for a full-field digital mammography (FFDM) detector geometry at energies typical for temporal subtraction contrast-enhanced (CE) breast imaging. The signal intensities from primary, scatter, and glare were quantified in images acquired with an a-Si/CsI(Tl) FFDM detector using a Rh target and a 0.27 mm Cu filter at tube voltages ranging from 35 to 49 kV. Measurements were obtained at the center of the irradiation region of 20-80 mm thick breast-equivalent phantoms. The phantoms were imaged with and without anmore » antiscatter grid. Based on these data, the performance of the antiscatter grid was determined by calculating the primary and scatter transmission factors (T{sub P} and T{sub S}) and Bucky factors (B{sub f}). In addition, glare-to-primary ratios (GPRs) and scatter-to-primary ratios (SPRs) were quantified. The effect of the antiscatter grid on the signal-difference-to-noise ratio (SDNR) was also assessed. It was found that T{sub P} increases with kV but does not depend on the phantom thickness; T{sub P} values between 0.81 and 0.84 were measured. T{sub S} increases with kV and phantom thickness; T{sub S} values between 0.13 and 0.21 were measured. B{sub f} decreases with kV and increases with phantom thickness; B{sub f} ranges from 1.4 to 2.1. GPR is nearly constant, varying from 0.10 to 0.11. SPR without an antiscatter grid (SPR{sup -}) ranges from 0.35 to 1.34. SPR{sup -} decreases by approximately 9% from 35 to 49 kV for a given phantom thickness and is 3.5 times larger for an 80 mm thick breast-equivalent phantom than for a 20 mm thick breast-equivalent phantom. SPR with an antiscatter grid (SPR{sup +}) ranges from 0.06 to 0.31. SPR{sup +} increases by approximately 23% from 35 to 49 kV for a given phantom thickness; SPR{sup +} is four times larger for an 80 mm breast-equivalent phantom than for a 20 mm breast-equivalent phantom. When imaging a 25 mm PMMA plate at the same mean glandular dose with and without an antiscatter grid, the SDNR is 4% greater with a grid than without. For an 75mm PMMA plate, the SDNR is 20% greater with a grid. In conclusion, at the higher x-ray energy range used for CE-DM and CE-DBT, an antiscatter grid significantly reduces SPR and improves SDNR. These effects are most pronounced for thick breasts.« less
  • Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additivemore » noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.« less
  • Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantifymore » image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize the scanning geometry for dedicated breast CT. This work was supported by a grant from the National Institute for Biomedical Imaging and Bioengineering (R01 EB002138)« less
  • Purpose: This study provides a simple method for improving precision of x-ray computed tomography (CT) scans of irradiated polymer gel dosimetry. The noise affecting CT scans of irradiated gels has been an impediment to the use of clinical CT scanners for gel dosimetry studies. Methods: In this study, it is shown that multiple scans of a single PAGAT gel dosimeter can be used to extrapolate a ''zero-scan'' image which displays a similar level of precision to an image obtained by averaging multiple CT images, without the compromised dose measurement resulting from the exposure of the gel to radiation from themore » CT scanner. Results: When extrapolating the zero-scan image, it is shown that exponential and simple linear fits to the relationship between Hounsfield unit and scan number, for each pixel in the image, provide an accurate indication of gel density. Conclusions: It is expected that this work will be utilized in the analysis of three-dimensional gel volumes irradiated using complex radiotherapy treatments.« less