skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Glutathione is required for efficient production of infectious picornavirus virions

Abstract

Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log{sub 1}, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.

Authors:
 [1];  [2]
  1. Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705 (United States). E-mail: smitha@ba.ars.usda.gov
  2. Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705 (United States). E-mail: dawsonh@ba.ars.usda.gov
Publication Date:
OSTI Identifier:
20850562
Resource Type:
Journal Article
Resource Relation:
Journal Name: Virology; Journal Volume: 353; Journal Issue: 2; Other Information: DOI: 10.1016/j.virol.2006.06.012; PII: S0042-6822(06)00407-7; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; AIDS VIRUS; CESIUM CHLORIDES; CULTURE MEDIA; ESTERS; GLUTATHIONE; HELA CELLS; INFLUENZA VIRUSES; REDOX POTENTIAL; REDUCING AGENTS; RNA; SACCHAROSE; SYNTHESIS

Citation Formats

Smith, Allen D., and Dawson, Harry. Glutathione is required for efficient production of infectious picornavirus virions. United States: N. p., 2006. Web. doi:10.1016/j.virol.2006.06.012.
Smith, Allen D., & Dawson, Harry. Glutathione is required for efficient production of infectious picornavirus virions. United States. doi:10.1016/j.virol.2006.06.012.
Smith, Allen D., and Dawson, Harry. Sat . "Glutathione is required for efficient production of infectious picornavirus virions". United States. doi:10.1016/j.virol.2006.06.012.
@article{osti_20850562,
title = {Glutathione is required for efficient production of infectious picornavirus virions},
author = {Smith, Allen D. and Dawson, Harry},
abstractNote = {Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log{sub 1}, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.},
doi = {10.1016/j.virol.2006.06.012},
journal = {Virology},
number = 2,
volume = 353,
place = {United States},
year = {Sat Sep 30 00:00:00 EDT 2006},
month = {Sat Sep 30 00:00:00 EDT 2006}
}
  • Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockoutmore » bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis.« less
  • The vaccinia virus temperature-sensitive mutations Cts6 and Cts9 were mapped by marker rescue and DNA sequencing to the A28 gene. Cts6 and Cts9 contain an identical 2-bp deletion truncating the A28 protein and removing the fourth conserved cysteine near the C-terminus. Cts9 mutant virions produced at 40 deg. C were non-infectious and unable to cause cytopathic effect. However, the mutant A28 protein localized to purified mature virions (MV) at 31 deg. C and 40 deg. C. MV of Cts9 produced at 40 deg. C bound to cells but did not enter cells. Low pH treatment of Cts9-infected cells at 18more » h p.i. failed to produce fusion from within at 40 deg. C, but gave fusion at 31 deg. C. Adsorption of Cts9 mutant virions to cells followed by low pH treatment showed a defect in fusion from without. The Cts9 phenotype suggests that the A28 protein is involved in both virus entry and cell-cell fusion, and supports the linkage between the two processes.« less
  • Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 is a core gene and its function in the virus life cycle is unknown. To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac109 deletion virus (vAc{sup 109KO}). Fluorescence and light microscopy showed that transfection of vAc{sup 109KO} results in a single-cell infection phenotype. Viral DNA replication is unaffected and the development of occlusion bodies in vAc{sup 109KO}-transfected cells evidenced progression to the very late phases of viral infection. Western blot and confocal immunofluorescence analysis showed that AC109 is expressed in the cytoplasm and nucleusmore » throughout infection. In addition, AC109 is a structural protein as it was detected in both budded virus (BV) and occlusion derived virus in both the envelope and nucleocapsid fractions. Titration assays by qPCR and TCID{sub 50} showed that vAc{sup 109KO} produced BV but the virions are non-infectious. The vAc{sup 109KO} BV were indistinguishable from the BV of repaired and wild type control viruses as determined by negative staining and electron microscopy.« less
  • Early events in vaccinia virus (VAC) morphogenesis, particularly the formation of viral membranes and their association with viroplasm, are poorly understood. Recently, we showed that repression of A30 or G7 expression results in the accumulation of normal viral membranes that form empty-looking immature virions (IV), which are separated from large masses of electron-dense viroplasm. In addition, A30 and G7 physically and functionally interact with each other and with the F10 protein kinase. To identify other proteins involved in early morphogenesis, proteins from cells that had been infected with vaccinia virus expressing an epitope-tagged copy of F10 were purified by immunoaffinitymore » chromatography and analyzed by gel electrophoresis. In addition to F10, A30, and G7, viral proteins A15, D2, D3, and J1 were identified by mass spectrometry of tryptic peptides. Further evidence for the complex was obtained by immunopurification of proteins associated with epitope-tagged A15, D2, and D3. The previously unstudied A15, like other proteins in the complex, was expressed late in infection, associated with virus cores, and required for the stability and kinase activity of F10. Biochemical and electron microscopic analyses indicated that mutants in which A15 or D2 expression was regulated by the Escherichia coli lac operator system exhibited phenotypes characterized by the presence of large numbers of empty immature virions, similar to the results obtained with inducible A30 and G7 mutants. Empty immature virions were also seen by electron microscopy of cells infected with temperature-sensitive mutants of D2 or D3, though the numbers of membrane forms were reduced perhaps due to additional effects of high temperature.« less
  • An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release amore » 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.« less