skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study

Abstract

Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions.

Authors:
;  [1];  [2]
  1. Biomedical Engineering Center, Industrial Technology Research Institute, Hsinchu, Taiwan (China)
  2. Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan (China)
Publication Date:
OSTI Identifier:
20800254
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 829; Journal Issue: 1; Conference: 5. international symposium on therapeutic ultrasound, Boston, MA (United States), 27-29 Oct 2005; Other Information: DOI: 10.1063/1.2205454; (c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABLATION; ALBUMINS; EMISSION; IMAGES; MONITORING; NMR IMAGING; NUCLEAR MAGNETIC RESONANCE; RADIOTHERAPY; SURGERY; TEMPERATURE DISTRIBUTION; ULTRASONOGRAPHY; VALIDATION; VARIATIONS

Citation Formats

Jiang, C. P., Lin, W. T., and Chen, W. S.. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study. United States: N. p., 2006. Web. doi:10.1063/1.2205454.
Jiang, C. P., Lin, W. T., & Chen, W. S.. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study. United States. doi:10.1063/1.2205454.
Jiang, C. P., Lin, W. T., and Chen, W. S.. Mon . "Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study". United States. doi:10.1063/1.2205454.
@article{osti_20800254,
title = {Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study},
author = {Jiang, C. P. and Lin, W. T. and Chen, W. S.},
abstractNote = {Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions.},
doi = {10.1063/1.2205454},
journal = {AIP Conference Proceedings},
number = 1,
volume = 829,
place = {United States},
year = {Mon May 08 00:00:00 EDT 2006},
month = {Mon May 08 00:00:00 EDT 2006}
}
  • A pulsatile flow phantom for studying ultrasound image-guided acoustic hemostasis in a controlled environment has been developed. An ex vivo porcine carotid artery was attached to the phantom and embedded in a visually and ultrasonically transparent gel. Heparinized porcine blood was pumped through the phantom. Power-Doppler and B-mode ultrasound were used to remotely target the HIFU focus to the site of a needle puncture. In nine trials, complete hemostasis was achieved after an average HIFU application of 55 +/- 34 seconds. The vessels remained patent after treatment. With this phantom, it will be possible to do controlled studies of ultrasoundmore » image-guided acoustic hemostasis.« less
  • Purpose: To evaluate the positioning accuracies of two image-guided localization systems, ExacTrac and On-Board Imager (OBI), in a stereotactic treatment unit. Methods and Materials: An anthropomorphic pelvis phantom with eight internal metal markers (BBs) was used. The center of one BB was set as plan isocenter. The phantom was set up on a treatment table with various initial setup errors. Then, the errors were corrected using each of the investigated systems. The residual errors were measured with respect to the radiation isocenter using orthogonal portal images with field size 3 x 3 cm{sup 2}. The angular localization discrepancies of themore » two systems and the correction accuracy of the robotic couch were also studied. A pair of pre- and post-cone beam computed tomography (CBCT) images was acquired for each angular correction. Then, the correction errors were estimated by using the internal BBs through fiducial marker-based registrations. Results: The isocenter localization errors ({mu} {+-}{sigma}) in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 {+-} 0.2 mm, -0.8 {+-} 0.2 mm, and -0.8 {+-} 0.4 mm for ExacTrac, and 0.5 {+-} 0.7 mm, 0.6 {+-} 0.5 mm, and 0.0 {+-} 0.5 mm for OBI CBCT. The registration angular discrepancy was 0.1 {+-} 0.2{sup o} between the two systems, and the maximum angle correction error of the robotic couch was 0.2{sup o} about all axes. Conclusion: Both the ExacTrac and the OBI CBCT systems showed approximately 1 mm isocenter localization accuracies. The angular discrepancy of two systems was minimal, and the robotic couch angle correction was accurate. These positioning uncertainties should be taken as a lower bound because the results were based on a rigid dosimetry phantom.« less
  • To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philipsmore » Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large animals and humans for HIFU-induced ablation and drug delivery. Integrated CT-guided focused ultrasound holds promise for tissue ablation, enhancing local drug delivery, and CT thermometry for monitoring ablation in near real-time.« less
  • Purpose: A new biodegradable liquid fiducial marker was devised to allow for easy insertion in lung tumors using thin needles. The purpose of this study was to evaluate the visibility of the liquid fiducial markers for image-guided radiation therapy and compare to existing solid fiducial markers and to one existing liquid fiducial marker currently commercially available. Methods: Fiducial marker visibility was quantified in terms of contrast to noise ratio (CNR) on planar kilovoltage x-ray images in a thorax phantom for different concentrations of the radio-opaque component of the new liquid fiducial marker, four solid fiducial markers, and one existing liquidmore » fiducial marker. Additionally, the image artifacts produced on computer tomography (CT) and cone-beam CT (CBCT) of all fiducial markers were quantified. Results: The authors found that the new liquid fiducial marker with the highest concentration of the radio-opaque component had a CNR > 2.05 for 62/63 exposures, which compared favorably to the existing solid fiducial markers and to the existing liquid fiducial marker evaluated. On CT and CBCT, the new liquid fiducial marker with the highest concentration produced lower streaking index artifact (30 and 14, respectively) than the solid gold markers (113 and 20, respectively) and the existing liquid fiducial marker (39 and 20, respectively). The size of the image artifact was larger for all of the liquid fiducial markers compared to the solid fiducial markers because of their larger physical size. Conclusions: The visibility and the image artifacts produced by the new liquid fiducial markers were comparable to existing solid fiducial markers and the existing liquid fiducial marker. The authors conclude that the new liquid fiducial marker represents an alternative to the fiducial markers tested.« less
  • The authors describe a detailed evaluation of the capabilities of imaging and image registration systems available with Varian linear accelerators for image guided radiation therapy (IGRT). Specifically, they present modulation transfer function curves for megavoltage planar, kilovoltage (kV) planar, and cone beam computed tomography imaging systems and compare these with conventional computed tomography. While kV planar imaging displayed the highest spatial resolution, all IGRT imaging techniques were assessed as adequate for their intended purpose. They have also characterized the image registration software available for use in conjunction with these imaging systems through a comprehensive phantom study involving translations in threemore » orthogonal directions. All combinations of imaging systems and image registration software were found to be accurate, although the planar kV imaging system with automatic registration was generally superior, with both accuracy and precision of the order of 1 mm, under the conditions tested. Based on their phantom study, the attainable accuracy for rigid body translations using any of the features available with Varian equipment will more likely be limited by the resolution of the couch readouts than by inherent limitations in the imaging systems and image registration software. Overall, the accuracy and precision of currently available IGRT technology exceed published experience with the accuracy and precision of contouring for planning.« less