skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PIV Analysis of Cavitation Flow Characteristics of He II

Abstract

In the present experimental study cavitation phenomena in both He I and He II flows were investigated through the application of the PIV technique and visual observation under the saturated vapor pressure condition. The cavitation flow was generated in the downstream regions of a Venturi channel and a converging jet nozzle driven by a contracting metal bellows. It is seen that cavitation inception is a kind of stochastic process and has definite temperature dependence. The spatial distribution of the cavitation bubble velocity is measured by using the PIV technique. Some differences in the cavitating flow pattern and the void fraction are found between He II and He I cavitating flows. The PIV result indicates that the void fraction for He II flow is larger than that for He I flow.

Authors:
;  [1]
  1. Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, 305-8573 (Japan)
Publication Date:
OSTI Identifier:
20800209
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 823; Journal Issue: 1; Conference: Cryogenic engineering conference, Keystone, CO (United States), 29 Aug - 2 Sep 2005; Other Information: DOI: 10.1063/1.2202594; (c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BELLOWS; BUBBLES; CAVITATION; HELIUM I; HELIUM II; LIQUIDS; METALS; SPATIAL DISTRIBUTION; STOCHASTIC PROCESSES; SUPERFLUIDITY; TEMPERATURE DEPENDENCE; VAPOR PRESSURE; VELOCITY; VOID FRACTION

Citation Formats

Harada, K., and Murakami, M. PIV Analysis of Cavitation Flow Characteristics of He II. United States: N. p., 2006. Web. doi:10.1063/1.2202594.
Harada, K., & Murakami, M. PIV Analysis of Cavitation Flow Characteristics of He II. United States. doi:10.1063/1.2202594.
Harada, K., and Murakami, M. Thu . "PIV Analysis of Cavitation Flow Characteristics of He II". United States. doi:10.1063/1.2202594.
@article{osti_20800209,
title = {PIV Analysis of Cavitation Flow Characteristics of He II},
author = {Harada, K. and Murakami, M.},
abstractNote = {In the present experimental study cavitation phenomena in both He I and He II flows were investigated through the application of the PIV technique and visual observation under the saturated vapor pressure condition. The cavitation flow was generated in the downstream regions of a Venturi channel and a converging jet nozzle driven by a contracting metal bellows. It is seen that cavitation inception is a kind of stochastic process and has definite temperature dependence. The spatial distribution of the cavitation bubble velocity is measured by using the PIV technique. Some differences in the cavitating flow pattern and the void fraction are found between He II and He I cavitating flows. The PIV result indicates that the void fraction for He II flow is larger than that for He I flow.},
doi = {10.1063/1.2202594},
journal = {AIP Conference Proceedings},
number = 1,
volume = 823,
place = {United States},
year = {Thu Apr 27 00:00:00 EDT 2006},
month = {Thu Apr 27 00:00:00 EDT 2006}
}
  • He II cavitation flow through a Venturi channel was experimentally investigated through temperature and pressure measurements and optical visualization. So far some distinctive features of cavitation between He II and He I flows were clarified. Then, detailed measurements were added for further investigation, such as the measurements of the temperature drop distribution throughout the flow channel and the void fraction. Further considerations were given on the cavitation inception with emphasis on the superheating of liquid helium, and the effect of the flow separation on cavitation.
  • Our previous experiments on the measurements of He II thermal counterflow using Particle Image Velocimetry (PIV) have shown that there exists a substantial discrepancy between the measured and theoretical values of normal fluid velocity. It was assumed that this is due to the slip velocity between tracer particles and liquid helium. In the present work, tracer particles with a much smaller mean diameter and a more uniform size distribution were selected in order to reduce the effect of slip velocity, and an improved two phase fluidized bed technique was used to introduce the particles into liquid helium. The normal fluidmore » velocity of thermal counterflow was then measured using the PIV technique at various heat fluxes and bath temperatures. The experimental results, however, still show the existence of discrepancy between PIV measured particle velocities and the theoretical normal fluid velocity. A preliminary explanation of these results is given based on an interaction of tracer particles with the superfluid component in the He II.« less
  • Solid particles of the mixture of hydrogen and deuterium have certain advantages for use in Particle Image Velocimetry (PIV) of He II flow. The H2/D2 particles are near neutrally buoyant in He II and will vaporize with the helium as the experimental apparatus is warmed to room temperature. Progress of the construction of a H2/D2 particle seeding and injection system is reported in this paper. A cryogenic pulse valve is used to inject the mixture of helium, hydrogen and deuterium gas directly into a He II bath. Experiments show that the seeding quality is dependent on the back pressure, themore » mix ratio of the deuterium and helium gases and valve open duration. The effects of these parameters on the solid deuterium particle distribution are also discussed.« less
  • The induced flow field of counterflow He II across a circular cylinder has been quantitatively studied using the particle image velocimetry (PIV) technique. Two different size cylinders (6.35 mm and 2 mm in diameter) were used and placed in a 20 mm wide rectangular channel. In these experiments, large-scale eddy motion generated by the He II counterflow was observed both in front of and behind the cylinder, an effect which has no analogue in classical fluids.
  • Cavitation and turbulence inside a diesel injector play a critical role in primary spray breakup and development processes. The study of cavitation in realistic injectors is challenging, both theoretically and experimentally, since the associated two-phase flow field is turbulent and highly complex, characterized by large pressure gradients and small orifice geometries. We report herein a computational investigation of the internal nozzle flow and cavitation characteristics in a diesel injector. A mixture based model in FLUENT V6.2 software is employed for simulations. In addition, a new criterion for cavitation inception based on the total stress is implemented, and its effectiveness inmore » predicting cavitation is evaluated. Results indicate that under realistic diesel engine conditions, cavitation patterns inside the orifice are influenced by the new cavitation criterion. Simulations are validated using the available two-phase nozzle flow data and the rate of injection measurements at various injection pressures (800-1600 bar) from the present study. The computational model is then used to characterize the effects of important injector parameters on the internal nozzle flow and cavitation behavior, as well as on flow properties at the nozzle exit. The parameters include injection pressure, needle lift position, and fuel type. The propensity of cavitation for different on-fleet diesel fuels is compared with that for n-dodecane, a diesel fuel surrogate. Results indicate that the cavitation characteristics of n-dodecane are significantly different from those of the other three fuels investigated. The effect of needle movement on cavitation is investigated by performing simulations at different needle lift positions. Cavitation patterns are seen to shift dramatically as the needle lift position is changed during an injection event. The region of significant cavitation shifts from top of the orifice to bottom of the orifice as the needle position is changed from fully open (0.275 mm) to nearly closed (0.1 mm), and this behavior can be attributed to the effect of needle position on flow patterns upstream of the orifice. The results demonstrate the capability of the cavitation model to predict cavitating nozzle flows in realistic diesel injectors and provide boundary conditions, in terms of vapor fraction, velocity, and turbulence parameters at the nozzle exit, which can be coupled with the primary breakup simulation.« less