skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641

Abstract

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C{sub 2}H{sub 2}-type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan (China)
  2. Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan (China). E-mail: mliu@ibt.tamhsc.edu
Publication Date:
OSTI Identifier:
20798764
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 339; Journal Issue: 4; Other Information: DOI: 10.1016/j.bbrc.2005.11.124; PII: S0006-291X(05)02634-3; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACETYLENE; AMINO ACIDS; ANIMAL TISSUES; CELL PROLIFERATION; GENE REGULATION; HEART; MICE; MUSCLES; PHOSPHOTRANSFERASES; RECEPTORS; ZINC

Citation Formats

Qi Xingzhu, Li Yongqing, Xiao Jing, Yuan Wuzhou, Yan Yan, Wang Yuequn, Liang Shuyuan, Zhu Chuanbing, Chen Yingduan, Liu Mingyao, and Wu Xiushan. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641. United States: N. p., 2006. Web.
Qi Xingzhu, Li Yongqing, Xiao Jing, Yuan Wuzhou, Yan Yan, Wang Yuequn, Liang Shuyuan, Zhu Chuanbing, Chen Yingduan, Liu Mingyao, & Wu Xiushan. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641. United States.
Qi Xingzhu, Li Yongqing, Xiao Jing, Yuan Wuzhou, Yan Yan, Wang Yuequn, Liang Shuyuan, Zhu Chuanbing, Chen Yingduan, Liu Mingyao, and Wu Xiushan. Fri . "Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641". United States. doi:.
@article{osti_20798764,
title = {Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641},
author = {Qi Xingzhu and Li Yongqing and Xiao Jing and Yuan Wuzhou and Yan Yan and Wang Yuequn and Liang Shuyuan and Zhu Chuanbing and Chen Yingduan and Liu Mingyao and Wu Xiushan},
abstractNote = {Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C{sub 2}H{sub 2}-type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE.},
doi = {},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 339,
place = {United States},
year = {Fri Jan 27 00:00:00 EST 2006},
month = {Fri Jan 27 00:00:00 EST 2006}
}
  • Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhausermore » effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.« less
  • Ret finger protein (RFP) is a nuclear protein that is highly expressed in testis and in various tumor cell lines. RFP functions as a transcriptional repressor and associates with Enhancer of Polycomb 1 (EPC1), a member of the Polycomb group proteins, and Mi-2{beta}, a main component of the nucleosome remodeling and deacetylase (NuRD) complex. We show that RFP binds with PIAS (protein inhibitor of activated STAT) proteins, PIAS1, PIAS3, PIASx{alpha} and PIASy at their carboxyl-terminal region and is covalently modified by SUMO-1 (sumoylation). PIAS proteins enhance the sumoylation of RFP in a dose-dependent manner and induce the translocation of RFPmore » into nuclear bodies reminiscent of the PML bodies. In addition, co-expression of PIAS proteins or SUMO-1 strengthened the transcriptional repressive activity of RFP. Finally, our immunohistochemical results show that RFP, SUMO-1 and PIASy localize in a characteristic nuclear structure juxtaposed with the inner nuclear membrane (XY body) of primary spermatocytes in mouse testis. These results demonstrate that the intracellular location and the transcriptional activity of RFP are modified by PIAS proteins which possess SUMO E3 ligase activities and suggest that they may play a co-operative role in spermatogenesis.« less
  • Research highlights: {yields} LIGHT induces ZFP91expression and nuclear translocation of p65, p52, and RelB in LT{beta}R signaling. {yields} ZFP91 knock-down abolishes DNA-binding activity of p52 and RelB but not of p65. {yields} ZFP91 regulates LIGHT-induced stabilization and activation of NIK. {yields} ZFP91 is required for the expression of non-canonical NF-{kappa}B target genes. -- Abstract: LIGHT is a member of tumor necrosis factor (TNF) superfamily, and its function is mediated through lymphotoxin-{beta} receptor (LT{beta}R), which is known to play important roles in inflammatory and immune responses through activation of NF-{kappa}B signaling pathways. However, molecular mechanism of LT{beta}R ligation-induced NF-{kappa}B signaling remainsmore » incompletely understood. In this report we demonstrate that a novel zinc-finger protein 91 (ZFP91) is a critical regulator in LIGHT-induced activation of non-canonical NF-{kappa}B pathway. ZFP91 appears to be required for NF-{kappa}B2 (p100) processing to p52, nuclear translocation of p52 and RelB, and DNA-binding activity of NF-{kappa}B in LIGHT-induced activation of non-canonical NF-{kappa}B pathway. Furthermore, ZFP91 knock-down by RNA interference blocks the LIGHT-induced accumulation of NIK and p100 processing, as well as the expression of non-canonical NF-{kappa}B target genes. These data clearly indicate that ZFP91 is a key regulator in LIGHT-induced activation of non-canonical NF-{kappa}B pathway in LT{beta}R signaling.« less
  • The ZNF198/FGFR1 fusion gene in atypical myeloproliferative disease produces a constitutively active cytoplasmic tyrosine kinase, unlike ZNF198 which is normally a nuclear protein. We have now shown that the ZNF198/FGFR1 fusion kinase interacts with the endogenous ZNF198 protein suggesting that the function of ZNF198 may be compromised in cells expressing it. Little is currently known about the endogenous function of ZNF198 and to investigate this further we performed a yeast two-hybrid analysis and identified SUMO-1 as a binding partner of ZNF198. These observations were confirmed using co-immunoprecipitation which demonstrated that ZNF198 is covalently modified by SUMO-1. Since many of themore » SUMO-1-modified proteins are targeted to the PML nuclear bodies we used confocal microscopy to show that SUMO-1, PML and ZNF198 colocalize to punctate structures, shown by immunocytochemistry to be PML bodies. Using co-immunoprecipitation we now show that PML and sumoylated ZNF198 can be found in a protein complex in the cell. Mutation of the SUMO-1 binding site in wild-type ZNF198 resulted in loss of distinct PML bodies, reduced PML levels and a more dispersed nuclear localization of the PML protein. In cells expressing ZNF198/FGFR1, which also lack the SUMO-1 binding site, SUMO-1 is preferentially localized in the cytoplasm, which is associated with loss of distinct PML bodies. Recently, arsenic trioxide (ATO) was proposed as an alternative therapy for APL that was resistant to traditional therapy. Treatment of cells expressing ZNF198/FGFR1 with ATO demonstrated reduced autophosphorylation of the ZNF198/FGFR1 protein and induced apoptosis, which is not seen in cells expressing wild-type ZNF198. Overall our results suggest that the sumoylation of ZNF198 is important for PML body formation and that the abrogation of sumoylation of ZNF198 in ZNF198/FGFR1 expressing cells may be an important mechanism in cellular transformation.« less
  • GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin ismore » involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin.« less