skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Opportunities and Challenges for Nondestructive Residual Stress Assessment

Abstract

For a long time, nondestructive residual stress assessment has been one of the greatest opportunities as well as one of the greatest challenges for the NDE community, and probably it will remain so in the foreseeable future. The most critical issue associated with nondestructive residual stress assessment seems to be that of selectivity. Numerous NDE methods have been found to be sufficiently sensitive to the presence of residual stress, but unfortunately also rather sensitive to other spurious variations that usually accompany residual stresses, such as anisotropic texture, microstructural inhomogeneity, plastic deformation, etc., which could interfere with, or even overshadow, the elastic strain caused by the sought residual stress. The only sufficiently selective NDE method that is more or less immune from these spurious effects is X-ray diffraction measurement, which however does not have the required penetration depth in most applications unless high-energy neutron radiation is used. It is timely for the community to sit back and ask where we are in this important area. This paper presents an overview of the various indirect techniques that have been used to measure residual stress in the past. It is shown that traditional techniques have a number of limitations, which have spurred severalmore » recent research programs. Some of the new techniques that are presently being examined in the NDE community are reviewed and the current status of these research efforts is assessed.« less

Authors:
 [1]
  1. Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221-0070 (United States)
Publication Date:
OSTI Identifier:
20798249
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 820; Journal Issue: 1; Conference: Conference on review of progress in quantitative nondestructive evaluation, Brunswick, ME (United States), 31 Jul - 5 Aug 2005; Other Information: DOI: 10.1063/1.2184508; (c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ANISOTROPY; NEUTRON BEAMS; NONDESTRUCTIVE TESTING; PLASTICITY; RESEARCH PROGRAMS; RESIDUAL STRESSES; STRAINS; STRESS ANALYSIS; X-RAY DIFFRACTION

Citation Formats

Nagy, P. B. Opportunities and Challenges for Nondestructive Residual Stress Assessment. United States: N. p., 2006. Web. doi:10.1063/1.2184508.
Nagy, P. B. Opportunities and Challenges for Nondestructive Residual Stress Assessment. United States. doi:10.1063/1.2184508.
Nagy, P. B. Mon . "Opportunities and Challenges for Nondestructive Residual Stress Assessment". United States. doi:10.1063/1.2184508.
@article{osti_20798249,
title = {Opportunities and Challenges for Nondestructive Residual Stress Assessment},
author = {Nagy, P. B.},
abstractNote = {For a long time, nondestructive residual stress assessment has been one of the greatest opportunities as well as one of the greatest challenges for the NDE community, and probably it will remain so in the foreseeable future. The most critical issue associated with nondestructive residual stress assessment seems to be that of selectivity. Numerous NDE methods have been found to be sufficiently sensitive to the presence of residual stress, but unfortunately also rather sensitive to other spurious variations that usually accompany residual stresses, such as anisotropic texture, microstructural inhomogeneity, plastic deformation, etc., which could interfere with, or even overshadow, the elastic strain caused by the sought residual stress. The only sufficiently selective NDE method that is more or less immune from these spurious effects is X-ray diffraction measurement, which however does not have the required penetration depth in most applications unless high-energy neutron radiation is used. It is timely for the community to sit back and ask where we are in this important area. This paper presents an overview of the various indirect techniques that have been used to measure residual stress in the past. It is shown that traditional techniques have a number of limitations, which have spurred several recent research programs. Some of the new techniques that are presently being examined in the NDE community are reviewed and the current status of these research efforts is assessed.},
doi = {10.1063/1.2184508},
journal = {AIP Conference Proceedings},
number = 1,
volume = 820,
place = {United States},
year = {Mon Mar 06 00:00:00 EST 2006},
month = {Mon Mar 06 00:00:00 EST 2006}
}
  • Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation ofmore » subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.« less
  • Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designsmore » and maintenance procedures.« less
  • Although herbal medicinal products (HMP) have been perceived by the public as relatively low risk, there has been more recognition of the potential risks associated with this type of product as the use of HMPs increases. Potential harm can occur via inherent toxicity of herbs, as well as from contamination, adulteration, plant misidentification, and interactions with other herbal products or pharmaceutical drugs. Regulatory safety assessment for HMPs relies on both the assessment of cases of adverse reactions and the review of published toxicity information. However, the conduct of such an integrated investigation has many challenges in terms of the quantitymore » and quality of information. Adverse reactions are under-reported, product quality may be less than ideal, herbs have a complex composition and there is lack of information on the toxicity of medicinal herbs or their constituents. Nevertheless, opportunities exist to capitalise on newer information to increase the current body of scientific evidence. Novel sources of information are reviewed, such as the use of poison control data to augment adverse reaction information from national pharmacovigilance databases, and the use of more recent toxicological assessment techniques such as predictive toxicology and omics. The integration of all available information can reduce the uncertainty in decision making with respect to herbal medicinal products. The example of Aristolochia and aristolochic acids is used to highlight the challenges related to safety assessment, and the opportunities that exist to more accurately elucidate the toxicity of herbal medicines.« less
  • One objective of mechanical design of welded fabrications is to compensate loads by stresses which the materials used in structural components can accommodate. Beside these load-induced stresses, residual stresses also have to be considered. These residual stresses are built up during weld pool cooling. All welded structures therefore have residual stresses, which can be relieved by heat treatment to below the yield-stress level at the annealing temperature. If not fully relieved, their presence can accelerate corrosion and corrosive cracking of welds. Quality assurance of welded structures needs tools for quantitative nondestructive analysis of stress states. The only nondestructive technique specificallymore » developed for measurement and analysis of stress states is x-ray diffraction. Special devices for application under industrial or on-site environments have been developed and are extensively used. This type of measurement can be time-consuming, depending on the equipment, and has practical limitations. Moreover the penetration of x-rays into metals is small, in the order of 30 microns, and the measurements can be affected by other surface-related disturbance caused by machining and surface finishing. In the last ten years extensive research and development has been done to develop stress-analyzing techniques of a typical ndt-style,'' i.e., the use of a probe manipulated by hand or a manipulator, together with portable equipment. The present state of development of such an approach and the most important results obtained up to now are described in the following article.« less
  • Due to their good resistance to wear and corrosion, TiC refractory coatings are increasingly applied in certain domains of the nuclear and aerospace industries. Quality control of materials being usually destructive, residual-stress measurements are suggested as a means of a nondestructive quality control. Based on the classical sin/sup 2//PSI/ method, residual stresses are measured for TiC coatings on cemented carbides and steel substrates. Medium tensile residual stresses are obtained in TiC on cemented carbide substrates, while rather large compressive residual stresses appear on steel substrates. A phenomenological interpretation of these stresses is given. The experimental results disprove the generally assumedmore » two-dimensional stress system, confirming thus the existence of stress gradients in the third dimension, and of a threedimensional stress system in the volume sampled by the X-ray beams.« less