skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conformity index: A review

Abstract

We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear.

Authors:
 [1];  [2];  [2];  [3];  [2];  [3]
  1. Institut Curie, Orsay (France). E-mail: loic.feuvret@cpo.curie.net
  2. Institut Curie, Orsay (France)
  3. (France)
Publication Date:
OSTI Identifier:
20793289
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 64; Journal Issue: 2; Other Information: DOI: 10.1016/j.ijrobp.2005.09.028; PII: S0360-3016(05)02719-7; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BEAMS; COMPUTER CODES; DOSIMETRY; MODULATION; NEOPLASMS; PATIENTS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; REVIEWS; VERIFICATION

Citation Formats

Feuvret, Loic, Noel, Georges, Mazeron, Jean-Jacques, Pitie Salpetriere Hospital, Paris, Bey, Pierre, and Institut Curie, Paris. Conformity index: A review. United States: N. p., 2006. Web. doi:10.1016/J.IJROBP.2005.0.
Feuvret, Loic, Noel, Georges, Mazeron, Jean-Jacques, Pitie Salpetriere Hospital, Paris, Bey, Pierre, & Institut Curie, Paris. Conformity index: A review. United States. doi:10.1016/J.IJROBP.2005.0.
Feuvret, Loic, Noel, Georges, Mazeron, Jean-Jacques, Pitie Salpetriere Hospital, Paris, Bey, Pierre, and Institut Curie, Paris. Wed . "Conformity index: A review". United States. doi:10.1016/J.IJROBP.2005.0.
@article{osti_20793289,
title = {Conformity index: A review},
author = {Feuvret, Loic and Noel, Georges and Mazeron, Jean-Jacques and Pitie Salpetriere Hospital, Paris and Bey, Pierre and Institut Curie, Paris},
abstractNote = {We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear.},
doi = {10.1016/J.IJROBP.2005.0},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 2,
volume = 64,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2006},
month = {Wed Feb 01 00:00:00 EST 2006}
}
  • The radiotherapy conformity index (CI) is a useful tool to quantitatively assess the quality of radiotherapy treatment plans, and represents the relationship between isodose distributions and target volume. A conformity index of unity implies high planning target volume (PTV) coverage and minimal unnecessary irradiation of surrounding tissues. We performed this analysis to describe the CI for lung cancer 3-dimensional conformal radiotherapy (3DCRT) and to identify clinical and technical determinants of CI, as it is not known which factors are associated with good quality 3D conformal radiotherapy treatment planning. Radiotherapy treatment plans from a database of 52 patients with inoperable Stagemore » 1 to 3b lung cancer, on a hypofractionated 3DCRT trial were evaluated. A CI was calculated for all plans using the definition of the ICRU 62:CI = (TV/PTV), which is the quotient of the treated volume (TV) and the PTV. Data on patient, tumor, and planning variables, which could influence CI, were recorded and analyzed. Mean CI was 2.01 (range = 1.06-3.8). On univariate analysis, PTV (p = 0.023), number of beams (p = 0.036), medial vs. lateral tumor location (p = 0.016), and increasing tumor stage (p = 0.041) were associated with improved conformity. On multiple regression analysis, factors found to be associated with CI included central vs. peripheral tumor location (p = 0.041) and PTV size (p = 0.058). The term 3DCRT is used routinely in the literature, without any indication of the degree of conformality. We recommend routine reporting of conformity indices. Conformity indices may be affected by both planning variables and tumor factors.« less
  • Purpose: Intensity modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers. Manual evaluation of IMRT plans for head-and-neck cancers has been especially challenging necessitating efficient and objective assessment tools. In this work, the authors address this issue by developing a personalized conformity index (CI) for comparison of IMRT plans for head-and-neck cancers and evaluating its plan quality discerning power in comparison with other widely used CIs. Methods: A two-dimensional CI with dose and distance incorporated (CI{sub DD}) was developed using the MATLAB program language, to quantify the planning target volume (PTV) coverage. Valuable information contained in themore » digital imaging and communication in medicine (DICOM) RT objects were harvested for computation of each of the CI{sub DD} components. Apart from the dose penalty factor, a distance-based exponential function was employed by varying the penalty weight associated with the location of cold spots within the PTV. With the goal of deriving a customized penalty factor, the distances between individual pixel and its nearest PTV boundary was found. Using the exponential function, the impact of distance penalty was substantially larger for cold spots closer to the PTV centroid but petered out quickly wherever they were situated in the vicinity of PTV border. In order to evaluate the CI{sub DD} scoring system, three CT image data sets of nasopharyngeal carcinoma (NPC) patients were collected. Ten IMRT plans with degrading qualities were generated from each dataset and were ranked based on CI{sub DD} and other existing indices. The coefficient of variance was calculated for each dataset to compare the degree of variation. Results: The CI{sub DD} scoring system that considered spatial importance of each voxel within the PTV was successfully developed. The results demonstrated that the CI{sub DD} including four discrete factors could provide accurate rankings of plan quality by examining the relative importance of each cold spot within the PTVs. Apart from the dose penalty factor, a distance-based exponential function was employed taking the specific tumor geometry into account. Compared with other commonly used CIs, the CI{sub DD} resulted in the largest coefficient of variance among the ten IMRT plans for each dataset, indicating that its discerning power was the best among the CIs being compared. Conclusions: The CI{sub DD} scoring system was successfully developed to incorporate patient-specific spatial dose information and provide a geometry-based physical index for comparison of IMRT plans for head-and-neck cancers. By taking individual tumor geometry into account, the superiority of CI{sub DD} in plan discerning power was demonstrated. The use of CI{sub DD} could provide an effective means of benchmarking performance, reducing treatment plan variability, and advancing the quality of current IMRT planning.« less
  • Purpose: The existing conformity index formulations are failing when multiple targets present outside the target of interest with same or different dose prescriptions. In the present study a novel methodology is introduced to solve this issue. Methods: The conformity index used by Nakamura et al (Int J Radiat Oncol Biol Phys 2001; 51(5):1313–1319) is taken as the base for this methodology. In this proposal, the prescription isodose volume (PIV) which normally includes the normal tissue and other target regions is restricted as PIV in annular regions of different thickness around the target of interest. The graphical line plotted between themore » thickness of annular region and the corresponding conformity index, will increase in the beginning and will reach a flat region, then it will increase again. The second increase in the conformity index depends basically on the distance between the targets, dose prescriptions, and size of the targets. The conformity index in the flat region should be the conformity index of the target of interest. This methodology was validated on dual target environment on a skull phantom in Multiplan planning system (Accuray Inc. Sunnyvale, USA) Results: When the surrounding target’s (sphere) size is changed from 1.5cm to 6cm diameter, the conformity index of the target of interest (3cm diameter) changed from 1.09 to 1.25. When the distance between the targets changed from 7.5cm to 2.5cm, the conformity index changed from 1.10 to 1.17. Similarly, when the prescribed dose changed from 25Gy to 50Gy the conformity index changed from 1.09 to 1.42. These values were above 2.0 when Nakamura et al formula was used. Conclusion: The proposed conformity index methodology eliminates the influence of surrounding targets to a greater extend. However, the limitations of this method should be studied further. Application of this method in clinical situations is the future scope.« less