skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy

Abstract

Radiation enhances both epithelial growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) expression, which are a part of key pathways for tumor progression. Some tumors may not respond well to EGFR inhibitors alone or may develop resistance to EGFR inhibitors. Therefore, drug therapy targeted to VEGF receptors and EGFRs, when combined with radiotherapy (RT), may improve tumor control and provide wider applicability. This article focuses on ZD6474, an inhibitor of EGFR and VEGF receptor signaling in combination with RT. We discuss preclinical and clinical studies with RT and inhibitors of VEGF or EGFR signaling first. We then address issues associated with ZD6474 pharmacokinetic dosing, and scheduling when combined with RT. We also discuss ZD6474 in the context of anti-EGFR therapy resistance. Dual inhibition of EGFR and VEGF receptor signaling pathways shows promise in enhancing RT efficacy.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6]
  1. Department of Radiation Oncology, University of Colorado Health Sciences Center, Aurora, CO (United States)
  2. Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO (United States)
  3. Dipartimento di Oncologia, dei Trapianti e delle Nuove Technologie in Medicina, Universita di Pisa, Pisa (Italy)
  4. Department of Molecular and Clinical Endocrinology, Universita degli Studi di Napoli Federico II, Naples (Italy)
  5. AstraZeneca, Wilmington, DE (United States)
  6. Department of Radiation Oncology, University of Colorado Health Sciences Center, Aurora, CO (United States). E-mail: david.raben@uchsc.edu
Publication Date:
OSTI Identifier:
20788263
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 64; Journal Issue: 1; Other Information: DOI: 10.1016/j.ijrobp.2005.05.050; PII: S0360-3016(05)00962-4; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; DRUGS; GROWTH FACTORS; INHIBITION; NEOPLASMS; RADIOTHERAPY; RECEPTORS; TYROSINE

Citation Formats

Frederick, Barbara, Gustafson, Dan, Bianco, Cataldo, Ciardiello, Fortunato, Dimery, Isaiah, and Raben, David. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. United States: N. p., 2006. Web. doi:10.1016/J.IJROBP.2005.0.
Frederick, Barbara, Gustafson, Dan, Bianco, Cataldo, Ciardiello, Fortunato, Dimery, Isaiah, & Raben, David. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. United States. doi:10.1016/J.IJROBP.2005.0.
Frederick, Barbara, Gustafson, Dan, Bianco, Cataldo, Ciardiello, Fortunato, Dimery, Isaiah, and Raben, David. Sun . "ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy". United States. doi:10.1016/J.IJROBP.2005.0.
@article{osti_20788263,
title = {ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy},
author = {Frederick, Barbara and Gustafson, Dan and Bianco, Cataldo and Ciardiello, Fortunato and Dimery, Isaiah and Raben, David},
abstractNote = {Radiation enhances both epithelial growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) expression, which are a part of key pathways for tumor progression. Some tumors may not respond well to EGFR inhibitors alone or may develop resistance to EGFR inhibitors. Therefore, drug therapy targeted to VEGF receptors and EGFRs, when combined with radiotherapy (RT), may improve tumor control and provide wider applicability. This article focuses on ZD6474, an inhibitor of EGFR and VEGF receptor signaling in combination with RT. We discuss preclinical and clinical studies with RT and inhibitors of VEGF or EGFR signaling first. We then address issues associated with ZD6474 pharmacokinetic dosing, and scheduling when combined with RT. We also discuss ZD6474 in the context of anti-EGFR therapy resistance. Dual inhibition of EGFR and VEGF receptor signaling pathways shows promise in enhancing RT efficacy.},
doi = {10.1016/J.IJROBP.2005.0},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 1,
volume = 64,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study,more » using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.« less
  • In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repairmore » with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.« less
  • Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less
  • According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) inmore » the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.« less
  • We herein disclose a novel chemical series of benzimidazole-ureas as inhibitors of VEGFR-2 and TIE-2 kinase receptors, both of which are implicated in angiogenesis. Structure-activity relationship (SAR) studies elucidated a critical role for the N1 nitrogen of both the benzimidazole (segment E) and urea (segment B) moieties. The SAR results were also supported by the X-ray crystallographic elucidation of the role of the N1 nitrogen and the urea moiety when the benzimidazole-urea compounds were bound to the VEGFR-2 enzyme. The left side phenyl ring (segment A) occupies the backpocket where a 3-hydrophobic substituent was favored for TIE-2 activity.